<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;"># Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numbers

import numpy as np

from ...utils import _safe_indexing, check_random_state
from ...utils._optional_dependencies import check_matplotlib_support
from ...utils._plotting import _validate_style_kwargs


class PredictionErrorDisplay:
    """Visualization of the prediction error of a regression model.

    This tool can display "residuals vs predicted" or "actual vs predicted"
    using scatter plots to qualitatively assess the behavior of a regressor,
    preferably on held-out data points.

    See the details in the docstrings of
    :func:`~sklearn.metrics.PredictionErrorDisplay.from_estimator` or
    :func:`~sklearn.metrics.PredictionErrorDisplay.from_predictions` to
    create a visualizer. All parameters are stored as attributes.

    For general information regarding `scikit-learn` visualization tools, read
    more in the :ref:`Visualization Guide &lt;visualizations&gt;`.
    For details regarding interpreting these plots, refer to the
    :ref:`Model Evaluation Guide &lt;visualization_regression_evaluation&gt;`.

    .. versionadded:: 1.2

    Parameters
    ----------
    y_true : ndarray of shape (n_samples,)
        True values.

    y_pred : ndarray of shape (n_samples,)
        Prediction values.

    Attributes
    ----------
    line_ : matplotlib Artist
        Optimal line representing `y_true == y_pred`. Therefore, it is a
        diagonal line for `kind="predictions"` and a horizontal line for
        `kind="residuals"`.

    errors_lines_ : matplotlib Artist or None
        Residual lines. If `with_errors=False`, then it is set to `None`.

    scatter_ : matplotlib Artist
        Scatter data points.

    ax_ : matplotlib Axes
        Axes with the different matplotlib axis.

    figure_ : matplotlib Figure
        Figure containing the scatter and lines.

    See Also
    --------
    PredictionErrorDisplay.from_estimator : Prediction error visualization
        given an estimator and some data.
    PredictionErrorDisplay.from_predictions : Prediction error visualization
        given the true and predicted targets.

    Examples
    --------
    &gt;&gt;&gt; import matplotlib.pyplot as plt
    &gt;&gt;&gt; from sklearn.datasets import load_diabetes
    &gt;&gt;&gt; from sklearn.linear_model import Ridge
    &gt;&gt;&gt; from sklearn.metrics import PredictionErrorDisplay
    &gt;&gt;&gt; X, y = load_diabetes(return_X_y=True)
    &gt;&gt;&gt; ridge = Ridge().fit(X, y)
    &gt;&gt;&gt; y_pred = ridge.predict(X)
    &gt;&gt;&gt; display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
    &gt;&gt;&gt; display.plot()
    &lt;...&gt;
    &gt;&gt;&gt; plt.show()
    """

    def __init__(self, *, y_true, y_pred):
        self.y_true = y_true
        self.y_pred = y_pred

    def plot(
        self,
        ax=None,
        *,
        kind="residual_vs_predicted",
        scatter_kwargs=None,
        line_kwargs=None,
    ):
        """Plot visualization.

        Extra keyword arguments will be passed to matplotlib's ``plot``.

        Parameters
        ----------
        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
                default="residual_vs_predicted"
            The type of plot to draw:

            - "actual_vs_predicted" draws the observed values (y-axis) vs.
              the predicted values (x-axis).
            - "residual_vs_predicted" draws the residuals, i.e. difference
              between observed and predicted values, (y-axis) vs. the predicted
              values (x-axis).

        scatter_kwargs : dict, default=None
            Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
            call.

        line_kwargs : dict, default=None
            Dictionary with keyword passed to the `matplotlib.pyplot.plot`
            call to draw the optimal line.

        Returns
        -------
        display : :class:`~sklearn.metrics.PredictionErrorDisplay`

            Object that stores computed values.
        """
        check_matplotlib_support(f"{self.__class__.__name__}.plot")

        expected_kind = ("actual_vs_predicted", "residual_vs_predicted")
        if kind not in expected_kind:
            raise ValueError(
                f"`kind` must be one of {', '.join(expected_kind)}. "
                f"Got {kind!r} instead."
            )

        import matplotlib.pyplot as plt

        if scatter_kwargs is None:
            scatter_kwargs = {}
        if line_kwargs is None:
            line_kwargs = {}

        default_scatter_kwargs = {"color": "tab:blue", "alpha": 0.8}
        default_line_kwargs = {"color": "black", "alpha": 0.7, "linestyle": "--"}

        scatter_kwargs = _validate_style_kwargs(default_scatter_kwargs, scatter_kwargs)
        line_kwargs = _validate_style_kwargs(default_line_kwargs, line_kwargs)

        scatter_kwargs = {**default_scatter_kwargs, **scatter_kwargs}
        line_kwargs = {**default_line_kwargs, **line_kwargs}

        if ax is None:
            _, ax = plt.subplots()

        if kind == "actual_vs_predicted":
            max_value = max(np.max(self.y_true), np.max(self.y_pred))
            min_value = min(np.min(self.y_true), np.min(self.y_pred))
            self.line_ = ax.plot(
                [min_value, max_value], [min_value, max_value], **line_kwargs
            )[0]

            x_data, y_data = self.y_pred, self.y_true
            xlabel, ylabel = "Predicted values", "Actual values"

            self.scatter_ = ax.scatter(x_data, y_data, **scatter_kwargs)

            # force to have a squared axis
            ax.set_aspect("equal", adjustable="datalim")
            ax.set_xticks(np.linspace(min_value, max_value, num=5))
            ax.set_yticks(np.linspace(min_value, max_value, num=5))
        else:  # kind == "residual_vs_predicted"
            self.line_ = ax.plot(
                [np.min(self.y_pred), np.max(self.y_pred)],
                [0, 0],
                **line_kwargs,
            )[0]
            self.scatter_ = ax.scatter(
                self.y_pred, self.y_true - self.y_pred, **scatter_kwargs
            )
            xlabel, ylabel = "Predicted values", "Residuals (actual - predicted)"

        ax.set(xlabel=xlabel, ylabel=ylabel)

        self.ax_ = ax
        self.figure_ = ax.figure

        return self

    @classmethod
    def from_estimator(
        cls,
        estimator,
        X,
        y,
        *,
        kind="residual_vs_predicted",
        subsample=1_000,
        random_state=None,
        ax=None,
        scatter_kwargs=None,
        line_kwargs=None,
    ):
        """Plot the prediction error given a regressor and some data.

        For general information regarding `scikit-learn` visualization tools,
        read more in the :ref:`Visualization Guide &lt;visualizations&gt;`.
        For details regarding interpreting these plots, refer to the
        :ref:`Model Evaluation Guide &lt;visualization_regression_evaluation&gt;`.

        .. versionadded:: 1.2

        Parameters
        ----------
        estimator : estimator instance
            Fitted regressor or a fitted :class:`~sklearn.pipeline.Pipeline`
            in which the last estimator is a regressor.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input values.

        y : array-like of shape (n_samples,)
            Target values.

        kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
                default="residual_vs_predicted"
            The type of plot to draw:

            - "actual_vs_predicted" draws the observed values (y-axis) vs.
              the predicted values (x-axis).
            - "residual_vs_predicted" draws the residuals, i.e. difference
              between observed and predicted values, (y-axis) vs. the predicted
              values (x-axis).

        subsample : float, int or None, default=1_000
            Sampling the samples to be shown on the scatter plot. If `float`,
            it should be between 0 and 1 and represents the proportion of the
            original dataset. If `int`, it represents the number of samples
            display on the scatter plot. If `None`, no subsampling will be
            applied. by default, 1000 samples or less will be displayed.

        random_state : int or RandomState, default=None
            Controls the randomness when `subsample` is not `None`.
            See :term:`Glossary &lt;random_state&gt;` for details.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        scatter_kwargs : dict, default=None
            Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
            call.

        line_kwargs : dict, default=None
            Dictionary with keyword passed to the `matplotlib.pyplot.plot`
            call to draw the optimal line.

        Returns
        -------
        display : :class:`~sklearn.metrics.PredictionErrorDisplay`
            Object that stores the computed values.

        See Also
        --------
        PredictionErrorDisplay : Prediction error visualization for regression.
        PredictionErrorDisplay.from_predictions : Prediction error visualization
            given the true and predicted targets.

        Examples
        --------
        &gt;&gt;&gt; import matplotlib.pyplot as plt
        &gt;&gt;&gt; from sklearn.datasets import load_diabetes
        &gt;&gt;&gt; from sklearn.linear_model import Ridge
        &gt;&gt;&gt; from sklearn.metrics import PredictionErrorDisplay
        &gt;&gt;&gt; X, y = load_diabetes(return_X_y=True)
        &gt;&gt;&gt; ridge = Ridge().fit(X, y)
        &gt;&gt;&gt; disp = PredictionErrorDisplay.from_estimator(ridge, X, y)
        &gt;&gt;&gt; plt.show()
        """
        check_matplotlib_support(f"{cls.__name__}.from_estimator")

        y_pred = estimator.predict(X)

        return cls.from_predictions(
            y_true=y,
            y_pred=y_pred,
            kind=kind,
            subsample=subsample,
            random_state=random_state,
            ax=ax,
            scatter_kwargs=scatter_kwargs,
            line_kwargs=line_kwargs,
        )

    @classmethod
    def from_predictions(
        cls,
        y_true,
        y_pred,
        *,
        kind="residual_vs_predicted",
        subsample=1_000,
        random_state=None,
        ax=None,
        scatter_kwargs=None,
        line_kwargs=None,
    ):
        """Plot the prediction error given the true and predicted targets.

        For general information regarding `scikit-learn` visualization tools,
        read more in the :ref:`Visualization Guide &lt;visualizations&gt;`.
        For details regarding interpreting these plots, refer to the
        :ref:`Model Evaluation Guide &lt;visualization_regression_evaluation&gt;`.

        .. versionadded:: 1.2

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            True target values.

        y_pred : array-like of shape (n_samples,)
            Predicted target values.

        kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
                default="residual_vs_predicted"
            The type of plot to draw:

            - "actual_vs_predicted" draws the observed values (y-axis) vs.
              the predicted values (x-axis).
            - "residual_vs_predicted" draws the residuals, i.e. difference
              between observed and predicted values, (y-axis) vs. the predicted
              values (x-axis).

        subsample : float, int or None, default=1_000
            Sampling the samples to be shown on the scatter plot. If `float`,
            it should be between 0 and 1 and represents the proportion of the
            original dataset. If `int`, it represents the number of samples
            display on the scatter plot. If `None`, no subsampling will be
            applied. by default, 1000 samples or less will be displayed.

        random_state : int or RandomState, default=None
            Controls the randomness when `subsample` is not `None`.
            See :term:`Glossary &lt;random_state&gt;` for details.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        scatter_kwargs : dict, default=None
            Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
            call.

        line_kwargs : dict, default=None
            Dictionary with keyword passed to the `matplotlib.pyplot.plot`
            call to draw the optimal line.

        Returns
        -------
        display : :class:`~sklearn.metrics.PredictionErrorDisplay`
            Object that stores the computed values.

        See Also
        --------
        PredictionErrorDisplay : Prediction error visualization for regression.
        PredictionErrorDisplay.from_estimator : Prediction error visualization
            given an estimator and some data.

        Examples
        --------
        &gt;&gt;&gt; import matplotlib.pyplot as plt
        &gt;&gt;&gt; from sklearn.datasets import load_diabetes
        &gt;&gt;&gt; from sklearn.linear_model import Ridge
        &gt;&gt;&gt; from sklearn.metrics import PredictionErrorDisplay
        &gt;&gt;&gt; X, y = load_diabetes(return_X_y=True)
        &gt;&gt;&gt; ridge = Ridge().fit(X, y)
        &gt;&gt;&gt; y_pred = ridge.predict(X)
        &gt;&gt;&gt; disp = PredictionErrorDisplay.from_predictions(y_true=y, y_pred=y_pred)
        &gt;&gt;&gt; plt.show()
        """
        check_matplotlib_support(f"{cls.__name__}.from_predictions")

        random_state = check_random_state(random_state)

        n_samples = len(y_true)
        if isinstance(subsample, numbers.Integral):
            if subsample &lt;= 0:
                raise ValueError(
                    f"When an integer, subsample={subsample} should be positive."
                )
        elif isinstance(subsample, numbers.Real):
            if subsample &lt;= 0 or subsample &gt;= 1:
                raise ValueError(
                    f"When a floating-point, subsample={subsample} should"
                    " be in the (0, 1) range."
                )
            subsample = int(n_samples * subsample)

        if subsample is not None and subsample &lt; n_samples:
            indices = random_state.choice(np.arange(n_samples), size=subsample)
            y_true = _safe_indexing(y_true, indices, axis=0)
            y_pred = _safe_indexing(y_pred, indices, axis=0)

        viz = cls(
            y_true=y_true,
            y_pred=y_pred,
        )

        return viz.plot(
            ax=ax,
            kind=kind,
            scatter_kwargs=scatter_kwargs,
            line_kwargs=line_kwargs,
        )
</pre></body></html>