
    >[g'                         d Z ddlmZmZ ddlZddlmZ ddlm	Z	m
Z
mZmZmZ ddlmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZ 	 ddZddZ G d de
e	e      Zd Z G d de
ee      Zy)z)Base class for ensemble-based estimators.    )ABCMetaabstractmethodN)effective_n_jobs   )BaseEstimatorMetaEstimatorMixincloneis_classifieris_regressor)Bunchcheck_random_state)get_tags)_print_elapsed_time)_routing_enabled)_BaseCompositionc                    t               s3d|v r/	 t        ||      5  | j                  |||d          ddd       | S t        ||      5   | j                  ||fi | ddd       | S # 1 sw Y   6xY w# t        $ rB}dt	        |      v r/t        dj                  | j                  j                              | d}~ww xY w# 1 sw Y   | S xY w)z7Private function used to fit an estimator within a job.sample_weight)r   Nz+unexpected keyword argument 'sample_weight'z8Underlying estimator {} does not support sample weights.)r   r   fit	TypeErrorstrformat	__class____name__)	estimatorXy
fit_paramsmessage_clsnamemessageexcs          Q/var/www/html/bid-api/venv/lib/python3.12/site-packages/sklearn/ensemble/_base.py_fit_single_estimatorr"      s     /Z"?
	$_g>a*_2MN ?  !':IMM!Q-*- ; ?> 	<CHNUU!++44 	
 	 ;s9   A5 A)A5 
C)A2.A5 5	C >=B;;C Cc                 4   t        |      }i }t        | j                  d            D ]X  }|dk(  s|j                  d      s|j	                  t        j                  t
        j                        j                        ||<   Z |r | j                  di | yy)a  Set fixed random_state parameters for an estimator.

    Finds all parameters ending ``random_state`` and sets them to integers
    derived from ``random_state``.

    Parameters
    ----------
    estimator : estimator supporting get/set_params
        Estimator with potential randomness managed by random_state
        parameters.

    random_state : int, RandomState instance or None, default=None
        Pseudo-random number generator to control the generation of the random
        integers. Pass an int for reproducible output across multiple function
        calls.
        See :term:`Glossary <random_state>`.

    Notes
    -----
    This does not necessarily set *all* ``random_state`` attributes that
    control an estimator's randomness, only those accessible through
    ``estimator.get_params()``.  ``random_state``s not controlled include
    those belonging to:

        * cross-validation splitters
        * ``scipy.stats`` rvs
    Tdeeprandom_state__random_stateN )
r   sorted
get_paramsendswithrandintnpiinfoint32max
set_params)r   r&   to_setkeys       r!   _set_random_statesr4   +   s    8 &l3LFi***56. CLL1A$B&..rxx/A/E/EFF3K 7 	&v&     c                   X    e Zd ZdZe	 dd e       dd       ZddZddZd Z	d	 Z
d
 Zy)BaseEnsemblea  Base class for all ensemble classes.

    Warning: This class should not be used directly. Use derived classes
    instead.

    Parameters
    ----------
    estimator : object
        The base estimator from which the ensemble is built.

    n_estimators : int, default=10
        The number of estimators in the ensemble.

    estimator_params : list of str, default=tuple()
        The list of attributes to use as parameters when instantiating a
        new base estimator. If none are given, default parameters are used.

    Attributes
    ----------
    estimator_ : estimator
        The base estimator from which the ensemble is grown.

    estimators_ : list of estimators
        The collection of fitted base estimators.
    N
   )n_estimatorsestimator_paramsc                .    || _         || _        || _        y N)r   r9   r:   )selfr   r9   r:   s       r!   __init__zBaseEnsemble.__init__l   s     #( 0r5   c                 N    | j                   | j                   | _        y|| _        y)zMCheck the base estimator.

        Sets the `estimator_` attributes.
        N)r   
estimator_)r=   defaults     r!   _validate_estimatorz BaseEnsemble._validate_estimator}   s     
 >>%"nnDO%DOr5   c                     t        | j                        } |j                  di | j                  D ci c]  }|t	        | |       c} |t        ||       |r| j                  j                  |       |S c c}w )zMake and configure a copy of the `estimator_` attribute.

        Warning: This method should be used to properly instantiate new
        sub-estimators.
        r(   )r	   r@   r1   r:   getattrr4   estimators_append)r=   rF   r&   r   ps        r!   _make_estimatorzBaseEnsemble._make_estimator   s{     $//*		TT=R=RS=R74#3 3=RST#y,7##I.  Ts   A8c                 ,    t        | j                        S )z0Return the number of estimators in the ensemble.)lenrE   r=   s    r!   __len__zBaseEnsemble.__len__   s    4##$$r5   c                      | j                   |   S )z.Return the index'th estimator in the ensemble.)rE   )r=   indexs     r!   __getitem__zBaseEnsemble.__getitem__   s    &&r5   c                 ,    t        | j                        S )z0Return iterator over estimators in the ensemble.)iterrE   rK   s    r!   __iter__zBaseEnsemble.__iter__   s    D$$%%r5   r<   )TN)r   
__module____qualname____doc__r   tupler>   rB   rH   rL   rO   rR   r(   r5   r!   r7   r7   Q   sH    4  
1 
1 
1 &"%'&r5   r7   )	metaclassc                     t        t        |      |       }t        j                  || |z  t              }|d| |z  xxx dz  ccc t        j
                  |      }||j                         dg|j                         z   fS )z;Private function used to partition estimators between jobs.)dtypeN   r   )minr   r-   fullintcumsumtolist)r9   n_jobsn_estimators_per_jobstartss       r!   _partition_estimatorsrc      s{     !&)<8F 776<6+AM0<&01Q61YY+,F'..01#2GGGr5   c                   ^     e Zd ZdZed        Zed        Zd Z fdZ	d fd	Z
 fdZ xZS )	_BaseHeterogeneousEnsemblea  Base class for heterogeneous ensemble of learners.

    Parameters
    ----------
    estimators : list of (str, estimator) tuples
        The ensemble of estimators to use in the ensemble. Each element of the
        list is defined as a tuple of string (i.e. name of the estimator) and
        an estimator instance. An estimator can be set to `'drop'` using
        `set_params`.

    Attributes
    ----------
    estimators_ : list of estimators
        The elements of the estimators parameter, having been fitted on the
        training data. If an estimator has been set to `'drop'`, it will not
        appear in `estimators_`.
    c                 >    t        di t        | j                        S )zDictionary to access any fitted sub-estimators by name.

        Returns
        -------
        :class:`~sklearn.utils.Bunch`
        r(   )r   dict
estimatorsrK   s    r!   named_estimatorsz+_BaseHeterogeneousEnsemble.named_estimators   s     -tDOO,--r5   c                     || _         y r<   rh   )r=   rh   s     r!   r>   z#_BaseHeterogeneousEnsemble.__init__   s	    $r5   c           	         t        | j                        dk(  rt        d      t        | j                   \  }}| j	                  |       t        d |D              }|st        d      t        |       rt        nt        }|D ]L  }|dk7  s	 ||      rt        dj                  |j                  j                  |j                  dd               ||fS )Nr   zfInvalid 'estimators' attribute, 'estimators' should be a non-empty list of (string, estimator) tuples.c              3   &   K   | ]	  }|d k7    yw)dropNr(   .0ests     r!   	<genexpr>zB_BaseHeterogeneousEnsemble._validate_estimators.<locals>.<genexpr>   s     @ZcC6MZs   zHAll estimators are dropped. At least one is required to be an estimator.rn   z The estimator {} should be a {}.   )rJ   rh   
ValueErrorzip_validate_namesanyr
   r   r   r   r   )r=   namesrh   has_estimatoris_estimator_typerq   s         r!   _validate_estimatorsz/_BaseHeterogeneousEnsemble._validate_estimators   s    t1$@   1zU#@Z@@& 
 .;4-@MlCf}%6s%; 6==..0A0J0J120N   j  r5   c                 &    t        |   di | | S )a  
        Set the parameters of an estimator from the ensemble.

        Valid parameter keys can be listed with `get_params()`. Note that you
        can directly set the parameters of the estimators contained in
        `estimators`.

        Parameters
        ----------
        **params : keyword arguments
            Specific parameters using e.g.
            `set_params(parameter_name=new_value)`. In addition, to setting the
            parameters of the estimator, the individual estimator of the
            estimators can also be set, or can be removed by setting them to
            'drop'.

        Returns
        -------
        self : object
            Estimator instance.
        rk   )super_set_params)r=   paramsr   s     r!   r1   z%_BaseHeterogeneousEnsemble.set_params   s    , 	3F3r5   c                 &    t         |   d|      S )a<  
        Get the parameters of an estimator from the ensemble.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `estimators` parameter.

        Parameters
        ----------
        deep : bool, default=True
            Setting it to True gets the various estimators and the parameters
            of the estimators as well.

        Returns
        -------
        params : dict
            Parameter and estimator names mapped to their values or parameter
            names mapped to their values.
        rh   r$   )r}   _get_params)r=   r%   r   s     r!   r*   z%_BaseHeterogeneousEnsemble.get_params  s    & w"<d";;r5   c                     t         |          }	 t        d | j                  D              }||j
                  _        |S # t        $ r d}Y  w xY w)Nc              3   t   K   | ]0  }|d    dk7  r"t        |d          j                  j                  nd 2 yw)rZ   rn   TN)r   
input_tags	allow_nanro   s     r!   rr   z>_BaseHeterogeneousEnsemble.__sklearn_tags__.<locals>.<genexpr>#  s=      *C :=Q69IQ ++55tS*s   68F)r}   __sklearn_tags__allrh   	Exceptionr   r   )r=   tagsr   r   s      r!   r   z+_BaseHeterogeneousEnsemble.__sklearn_tags__   s[    w')		 ?? I %.!  	 I		s   A   AA)T)r   rS   rT   rU   propertyri   r   r>   r{   r1   r*   r   __classcell__)r   s   @r!   re   re      sI    $ . . % %!:2<* r5   re   )NNr<   )rU   abcr   r   numpyr-   joblibr   baser   r   r	   r
   r   utilsr   r   utils._tagsr   utils._user_interfacer   utils.metadata_routingr   utils.metaestimatorsr   r"   r4   r7   rc   re   r(   r5   r!   <module>r      sh    /
 (  # X X - " 7 5 3 @D0#'LQ&%} Q&h
H{(G{r5   