
    5[gn                         d Z ddlZddlZddlmZmZmZmZm	Z	 ddl
mZmZmZ ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZ g dZd Zd ZeZ d Z!d Z"ddZ#ddZ$ddZ%ddZ&y)zMatrix equation solver routines    N)invLinAlgErrornormcondsvd   )solvesolve_triangularmatrix_balance)get_lapack_funcs)schur)lu)qr)ordqz)_asarray_validated)kron
block_diag)solve_sylvestersolve_continuous_lyapunovsolve_discrete_lyapunovsolve_lyapunovsolve_continuous_aresolve_discrete_arec                 "   t        | d      \  }}t        |j                         j                         d      \  }}t        j                  t        j                  |j                         j                         |      |      }t        d|||f      \  }|t        d       ||||d      \  }	}
}|
|	z  }	|dk  rt        d| fz        t        j                  t        j                  ||	      |j                         j                               S )	a  
    Computes a solution (X) to the Sylvester equation :math:`AX + XB = Q`.

    Parameters
    ----------
    a : (M, M) array_like
        Leading matrix of the Sylvester equation
    b : (N, N) array_like
        Trailing matrix of the Sylvester equation
    q : (M, N) array_like
        Right-hand side

    Returns
    -------
    x : (M, N) ndarray
        The solution to the Sylvester equation.

    Raises
    ------
    LinAlgError
        If solution was not found

    Notes
    -----
    Computes a solution to the Sylvester matrix equation via the Bartels-
    Stewart algorithm. The A and B matrices first undergo Schur
    decompositions. The resulting matrices are used to construct an
    alternative Sylvester equation (``RY + YS^T = F``) where the R and S
    matrices are in quasi-triangular form (or, when R, S or F are complex,
    triangular form). The simplified equation is then solved using
    ``*TRSYL`` from LAPACK directly.

    .. versionadded:: 0.11.0

    Examples
    --------
    Given `a`, `b`, and `q` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]])
    >>> b = np.array([[1]])
    >>> q = np.array([[1],[2],[3]])
    >>> x = linalg.solve_sylvester(a, b, q)
    >>> x
    array([[ 0.0625],
           [-0.5625],
           [ 0.6875]])
    >>> np.allclose(a.dot(x) + x.dot(b), q)
    True

    realoutput)trsylzQLAPACK implementation does not contain a proper Sylvester equation solver (TRSYL)Ctranbr   z(Illegal value encountered in the %d term)r   conj	transposenpdotr   RuntimeErrorr   )abqrusvfr   yscaleinfos               P/var/www/html/bid-api/venv/lib/python3.12/site-packages/scipy/linalg/_solvers.pyr   r      s   n 6"DAq ##%f5DAq 	rvvaffh((*A.2A j1a)4FE} ? @ 	@1a#.NAudaAax (,05(3 4 	4 66"&&A, 2 2 455    c                 t   t        j                  t        | d            } t        j                  t        |d            }t        }t	        | |f      D ]Y  \  }}t        j
                  |      rt        }t        j                  |j                   r>t        dj                  d|                | j                  |j                  k7  rt        d      t        | d      \  }}|j                         j                  j                  |j                  |            }t        d||f      }|t        k(  rd	nd
}	 |||||	      \  }
}}|dk  rt        d|  d      |dk(  rt!        j"                  dt$        d       |
|z  }
|j                  |
      j                  |j                         j                        S )a  
    Solves the continuous Lyapunov equation :math:`AX + XA^H = Q`.

    Uses the Bartels-Stewart algorithm to find :math:`X`.

    Parameters
    ----------
    a : array_like
        A square matrix

    q : array_like
        Right-hand side square matrix

    Returns
    -------
    x : ndarray
        Solution to the continuous Lyapunov equation

    See Also
    --------
    solve_discrete_lyapunov : computes the solution to the discrete-time
        Lyapunov equation
    solve_sylvester : computes the solution to the Sylvester equation

    Notes
    -----
    The continuous Lyapunov equation is a special form of the Sylvester
    equation, hence this solver relies on LAPACK routine ?TRSYL.

    .. versionadded:: 0.11.0

    Examples
    --------
    Given `a` and `q` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]])
    >>> b = np.array([2, 4, -1])
    >>> q = np.eye(3)
    >>> x = linalg.solve_continuous_lyapunov(a, q)
    >>> x
    array([[ -0.75  ,   0.875 ,  -3.75  ],
           [  0.875 ,  -1.375 ,   5.3125],
           [ -3.75  ,   5.3125, -27.0625]])
    >>> np.allclose(a.dot(x) + x.dot(a.T), q)
    True
    Tcheck_finiteMatrix {} should be square.aq*Matrix a and q should have the same shape.r   r   r   Tr   r    r   zH?TRSYL exited with the internal error "illegal value in argument number z8.". See LAPACK documentation for the ?TRSYL error codes.r   zInput "a" has an eigenvalue pair whose sum is very close to or exactly zero. The solution is obtained via perturbing the coefficients.   )
stacklevel)r$   
atleast_2dr   float	enumerateiscomplexobjcomplexequalshape
ValueErrorformatr   r"   r:   r%   r   warningswarnRuntimeWarning)r'   r)   r_or_cind_r*   r+   r.   r   dtype_stringr/   r0   r1   s                r2   r   r   m   s   d 	(>?A
(>?AFQF#Q??1Fxx!:AA$s)LMM $ 	ww!''EFF 6"DAq 	


quuQx A Wq!f-E E/3sL1a,7NAudax >?CeW ELL M 	M 
 B %	4 JA558<<

##r3   c                     t        | | j                               }t        j                  |j                  d         |z
  }t        ||j                               }t        j                  ||j                        S )z
    Solves the discrete Lyapunov equation directly.

    This function is called by the `solve_discrete_lyapunov` function with
    `method=direct`. It is not supposed to be called directly.
    r   )r   r"   r$   eyerC   r	   flattenreshape)r'   r)   lhsxs       r2   _solve_discrete_lyapunov_directrS      sX     q!&&(
C
&&1

$Cc199;A::a!!r3   c           	         t        j                  | j                  d         }| j                         j	                         }t        ||z         }t        j                  ||z
  |      }dt        j                  t        j                  t        | |z         |      |      z  }t        |j                         j	                         |       S )z
    Solves the discrete Lyapunov equation using a bilinear transformation.

    This function is called by the `solve_discrete_lyapunov` function with
    `method=bilinear`. It is not supposed to be called directly.
    r   r;   )r$   rN   rC   r"   r#   r   r%   r   )r'   r)   rN   aHaHI_invr(   cs          r2   !_solve_discrete_lyapunov_bilinearrX      s     &&
C	
			B"s(mG
rCx!A	"&&AGa('
22A!&&(,,.33r3   c                    t        j                  |       } t        j                  |      }|| j                  d   dk\  rd}nd}|j                         }|dk(  rt	        | |      }|S |dk(  rt        | |      }|S t        d|z        )a	  
    Solves the discrete Lyapunov equation :math:`AXA^H - X + Q = 0`.

    Parameters
    ----------
    a, q : (M, M) array_like
        Square matrices corresponding to A and Q in the equation
        above respectively. Must have the same shape.

    method : {'direct', 'bilinear'}, optional
        Type of solver.

        If not given, chosen to be ``direct`` if ``M`` is less than 10 and
        ``bilinear`` otherwise.

    Returns
    -------
    x : ndarray
        Solution to the discrete Lyapunov equation

    See Also
    --------
    solve_continuous_lyapunov : computes the solution to the continuous-time
        Lyapunov equation

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *direct* if ``M`` is less than 10
    and ``bilinear`` otherwise.

    Method *direct* uses a direct analytical solution to the discrete Lyapunov
    equation. The algorithm is given in, for example, [1]_. However, it requires
    the linear solution of a system with dimension :math:`M^2` so that
    performance degrades rapidly for even moderately sized matrices.

    Method *bilinear* uses a bilinear transformation to convert the discrete
    Lyapunov equation to a continuous Lyapunov equation :math:`(BX+XB'=-C)`
    where :math:`B=(A-I)(A+I)^{-1}` and
    :math:`C=2(A' + I)^{-1} Q (A + I)^{-1}`. The continuous equation can be
    efficiently solved since it is a special case of a Sylvester equation.
    The transformation algorithm is from Popov (1964) as described in [2]_.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] "Lyapunov equation", Wikipedia,
       https://en.wikipedia.org/wiki/Lyapunov_equation#Discrete_time
    .. [2] Gajic, Z., and M.T.J. Qureshi. 2008.
       Lyapunov Matrix Equation in System Stability and Control.
       Dover Books on Engineering Series. Dover Publications.

    Examples
    --------
    Given `a` and `q` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[0.2, 0.5],[0.7, -0.9]])
    >>> q = np.eye(2)
    >>> x = linalg.solve_discrete_lyapunov(a, q)
    >>> x
    array([[ 0.70872893,  1.43518822],
           [ 1.43518822, -2.4266315 ]])
    >>> np.allclose(a.dot(x).dot(a.T)-x, -q)
    True

    r   
   bilineardirectzUnknown solver %s)r$   asarrayrC   lowerrS   rX   rD   )r'   r)   methodmethrR   s        r2   r   r      s    L 	

1A


1A~771:FF<<>Dx+Aq1 H 
	-a3 H ,v566r3   c           
      
   t        | |||||d      \
  } }}}}}}}}	}
t        j                  d|z  |z   d|z  |z   f|	      }| |d|d|f<   d|d||d|z  f<   ||d|d|z  df<   | ||d|z  d|f<   | j                         j                   ||d|z  |d|z  f<   |dn| ||d|z  d|z  df<   |dn|j                         j                  |d|z  dd|f<   |j                         j                  |d|z  d|d|z  f<   ||d|z  dd|z  df<   |
r=|;t        ||j                         j                  t        j                  ||	            }n7t        t        j                  d|z        t        j                  ||	            }|r t        j                  |      t        j                  |      z   }t        j                  |d       t        |dd      \  }\  }}t        j                  |t        j                  |            st        j                  |      }t        j                  ||d|z   |d| z
  dz        }dt        j                  || |d|z  d f   z  }|dddf   t        j                   |      z  }||z  }||z  }t#        |dd| df         \  }}|dd|df   j                         j                  j%                  |dddd|z  f         }|dd|z  |df   j                         j                  j%                  |dd|z  dd|z  f         }|	t&        k(  rd	nd
}t)        ||dddd|      \  }}}}}}|Dt#        t        j*                  |j%                  |d|d|f         ||dd|f   f            \  }}|d|d|f   }||dd|f   }t-        |      \  }}}dt/        |      z  t        j0                  d      k  rt3        d      t5        |j                         j                  t5        |j                         j                  |j                         j                  d      d      j                         j                  j%                  |j                         j                        }|r|d|df   |d| z  z  }|j                         j                  j%                  |      }t7        |d      }||j                         j                  z
  }t        j8                  t        j0                  d      d|z  g      }t7        |d      |kD  rt3        d      ||j                         j                  z   dz  S )a  
    Solves the continuous-time algebraic Riccati equation (CARE).

    The CARE is defined as

    .. math::

          X A + A^H X - X B R^{-1} B^H X + Q = 0

    The limitations for a solution to exist are :

        * All eigenvalues of :math:`A` on the right half plane, should be
          controllable.

        * The associated hamiltonian pencil (See Notes), should have
          eigenvalues sufficiently away from the imaginary axis.

    Moreover, if ``e`` or ``s`` is not precisely ``None``, then the
    generalized version of CARE

    .. math::

          E^HXA + A^HXE - (E^HXB + S) R^{-1} (B^HXE + S^H) + Q = 0

    is solved. When omitted, ``e`` is assumed to be the identity and ``s``
    is assumed to be the zero matrix with sizes compatible with ``a`` and
    ``b``, respectively.

    Parameters
    ----------
    a : (M, M) array_like
        Square matrix
    b : (M, N) array_like
        Input
    q : (M, M) array_like
        Input
    r : (N, N) array_like
        Nonsingular square matrix
    e : (M, M) array_like, optional
        Nonsingular square matrix
    s : (M, N) array_like, optional
        Input
    balanced : bool, optional
        The boolean that indicates whether a balancing step is performed
        on the data. The default is set to True.

    Returns
    -------
    x : (M, M) ndarray
        Solution to the continuous-time algebraic Riccati equation.

    Raises
    ------
    LinAlgError
        For cases where the stable subspace of the pencil could not be
        isolated. See Notes section and the references for details.

    See Also
    --------
    solve_discrete_are : Solves the discrete-time algebraic Riccati equation

    Notes
    -----
    The equation is solved by forming the extended hamiltonian matrix pencil,
    as described in [1]_, :math:`H - \lambda J` given by the block matrices ::

        [ A    0    B ]             [ E   0    0 ]
        [-Q  -A^H  -S ] - \lambda * [ 0  E^H   0 ]
        [ S^H B^H   R ]             [ 0   0    0 ]

    and using a QZ decomposition method.

    In this algorithm, the fail conditions are linked to the symmetry
    of the product :math:`U_2 U_1^{-1}` and condition number of
    :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
    eigenvectors spanning the stable subspace with 2-m rows and partitioned
    into two m-row matrices. See [1]_ and [2]_ for more details.

    In order to improve the QZ decomposition accuracy, the pencil goes
    through a balancing step where the sum of absolute values of
    :math:`H` and :math:`J` entries (after removing the diagonal entries of
    the sum) is balanced following the recipe given in [3]_.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1]  P. van Dooren , "A Generalized Eigenvalue Approach For Solving
       Riccati Equations.", SIAM Journal on Scientific and Statistical
       Computing, Vol.2(2), :doi:`10.1137/0902010`

    .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
       Equations.", Massachusetts Institute of Technology. Laboratory for
       Information and Decision Systems. LIDS-R ; 859. Available online :
       http://hdl.handle.net/1721.1/1301

    .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
       SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993`

    Examples
    --------
    Given `a`, `b`, `q`, and `r` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[4, 3], [-4.5, -3.5]])
    >>> b = np.array([[1], [-1]])
    >>> q = np.array([[9, 6], [6, 4.]])
    >>> r = 1
    >>> x = linalg.solve_continuous_are(a, b, q, r)
    >>> x
    array([[ 21.72792206,  14.48528137],
           [ 14.48528137,   9.65685425]])
    >>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q)
    True

    carer;   dtypeN        r   r   separatepermuter   rA   lhpTFsortoverwrite_aoverwrite_br6   r         ?!Failed to find a finite solution.r^   unit_diagonal     @@皙?zQThe associated Hamiltonian pencil has eigenvalues too close to the imaginary axis)_are_validate_argsr$   emptyr"   r:   r   
zeros_likerN   absfill_diagonalr   allclose	ones_likelog2roundr_
reciprocalr   r%   r>   r   vstackr   r   spacingr   r
   r   max)r'   r(   r)   r*   er,   balancedmnrI   gen_areHJMrK   scaelwisescaleout_strr+   u00u10upuluurR   u_symn_u_symsym_thresholds                               r2   r   r   F  s8   p /A561aAv/O+Aq!Q1aFG 	!A#a%1Qv.AAbqb"1"fIAbqb!AaC%iLAbqb!A#$hK2Aa!eRaRiLvvxzzkAa!eQqsUlO9R1"Aa!eQqSTkN	"qvvxzzAacdBQBhKVVXZZAacdAacEkNAacdAaCDjM1=q!&&(**bmmAV&DErvvac{BMM!6$BC FF1Iq	!
B$QA>8C{{3S 12 ''#,C#a!*s2Aw.12AruuQC!I-..Cag,s);;KAA aA23i=DAq	!QR%a4AaC4j)A	$1Q3$(  4AaC4!A#:/A %fYGQ4)-E$+-Aq!Q1
 	}"))QUU1RaR!V9-qRaRy9:;1
BQBF)C
ABF)C CJBBbzBJJrN"=>> 	)"'')++*-((*,,046 (,		
  46!!CC	$4  	S!T]S!W$$ HHJLLS!E5!nGEJJLNN"EFFBJJu-s7{;<ME1~% < = 	= 

NAr3   c           
      
   t        | |||||d      \
  } }}}}}}}}	}
t        j                  d|z  |z   d|z  |z   f|	      }| |d|d|f<   ||d|d|z  df<   | ||d|z  d|f<   |t        j                  |      n|j	                         j
                  ||d|z  |d|z  f<   |dn| ||d|z  d|z  df<   |dn|j	                         j
                  |d|z  dd|f<   ||d|z  dd|z  df<   t        j                  ||	      }|t        j                  |      n||d|d|f<   | j	                         j
                  ||d|z  |d|z  f<   |j	                         j
                   |d|z  d|d|z  f<   |r t        j                  |      t        j                  |      z   }t        j                  |d       t        |dd      \  }\  }}t        j                  |t        j                  |            st        j                  |      }t        j                  ||d|z   |d| z
  dz        }dt        j                  || |d|z  d f   z  }|dddf   t        j                  |      z  }||z  }||z  }t!        |dd| df         \  }}|dd|df   j	                         j
                  j#                  |dddd|z  f         }|dd|df   j	                         j
                  j#                  |dddd|z  f         }|	t$        k(  rd	nd
}t'        ||dddd|      \  }}}}}}|Dt!        t        j(                  |j#                  |d|d|f         ||dd|f   f            \  }}|d|d|f   }||dd|f   }t+        |      \  }}}dt-        |      z  t        j.                  d      k  rt1        d      t3        |j	                         j
                  t3        |j	                         j
                  |j	                         j
                  d      d      j	                         j
                  j#                  |j	                         j
                        }|r|d|df   |d| z  z  }|j	                         j
                  j#                  |      }t5        |d      }||j	                         j
                  z
  }t        j6                  t        j.                  d      d|z  g      }t5        |d      |kD  rt1        d      ||j	                         j
                  z   dz  S )al  
    Solves the discrete-time algebraic Riccati equation (DARE).

    The DARE is defined as

    .. math::

          A^HXA - X - (A^HXB) (R + B^HXB)^{-1} (B^HXA) + Q = 0

    The limitations for a solution to exist are :

        * All eigenvalues of :math:`A` outside the unit disc, should be
          controllable.

        * The associated symplectic pencil (See Notes), should have
          eigenvalues sufficiently away from the unit circle.

    Moreover, if ``e`` and ``s`` are not both precisely ``None``, then the
    generalized version of DARE

    .. math::

          A^HXA - E^HXE - (A^HXB+S) (R+B^HXB)^{-1} (B^HXA+S^H) + Q = 0

    is solved. When omitted, ``e`` is assumed to be the identity and ``s``
    is assumed to be the zero matrix.

    Parameters
    ----------
    a : (M, M) array_like
        Square matrix
    b : (M, N) array_like
        Input
    q : (M, M) array_like
        Input
    r : (N, N) array_like
        Square matrix
    e : (M, M) array_like, optional
        Nonsingular square matrix
    s : (M, N) array_like, optional
        Input
    balanced : bool
        The boolean that indicates whether a balancing step is performed
        on the data. The default is set to True.

    Returns
    -------
    x : (M, M) ndarray
        Solution to the discrete algebraic Riccati equation.

    Raises
    ------
    LinAlgError
        For cases where the stable subspace of the pencil could not be
        isolated. See Notes section and the references for details.

    See Also
    --------
    solve_continuous_are : Solves the continuous algebraic Riccati equation

    Notes
    -----
    The equation is solved by forming the extended symplectic matrix pencil,
    as described in [1]_, :math:`H - \lambda J` given by the block matrices ::

           [  A   0   B ]             [ E   0   B ]
           [ -Q  E^H -S ] - \lambda * [ 0  A^H  0 ]
           [ S^H  0   R ]             [ 0 -B^H  0 ]

    and using a QZ decomposition method.

    In this algorithm, the fail conditions are linked to the symmetry
    of the product :math:`U_2 U_1^{-1}` and condition number of
    :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
    eigenvectors spanning the stable subspace with 2-m rows and partitioned
    into two m-row matrices. See [1]_ and [2]_ for more details.

    In order to improve the QZ decomposition accuracy, the pencil goes
    through a balancing step where the sum of absolute values of
    :math:`H` and :math:`J` rows/cols (after removing the diagonal entries)
    is balanced following the recipe given in [3]_. If the data has small
    numerical noise, balancing may amplify their effects and some clean up
    is required.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1]  P. van Dooren , "A Generalized Eigenvalue Approach For Solving
       Riccati Equations.", SIAM Journal on Scientific and Statistical
       Computing, Vol.2(2), :doi:`10.1137/0902010`

    .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
       Equations.", Massachusetts Institute of Technology. Laboratory for
       Information and Decision Systems. LIDS-R ; 859. Available online :
       http://hdl.handle.net/1721.1/1301

    .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
       SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993`

    Examples
    --------
    Given `a`, `b`, `q`, and `r` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg as la
    >>> a = np.array([[0, 1], [0, -1]])
    >>> b = np.array([[1, 0], [2, 1]])
    >>> q = np.array([[-4, -4], [-4, 7]])
    >>> r = np.array([[9, 3], [3, 1]])
    >>> x = la.solve_discrete_are(a, b, q, r)
    >>> x
    array([[-4., -4.],
           [-4.,  7.]])
    >>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a))
    >>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q)
    True

    darer;   rc   Nre   r   r   rf   r   rA   iucTFrj   rn   ro   rp   rq   rs   rt   zMThe associated symplectic pencil has eigenvalues too close to the unit circle)ru   r$   zerosrN   r"   r:   rw   rx   ry   r   rz   r{   r|   r}   r~   r   r   r%   r>   r   r   r   r   r   r   r
   r   r   )r'   r(   r)   r*   r   r,   r   r   r   rI   r   r   r   r   rK   r   r   q_of_qrr   r+   r   r   r   r   r   rR   r   r   r   s                                r2   r   r     s/   t /A561aAv/O+Aq!Q1aFG 	!A#a%1Qv.AAbqb"1"fIAbqb!A#$hK2Aa!eRaRiL#$9bffQi!&&(**Aa!eQqsUlO9R1"Aa!eQqSTkN	"qvvxzzAacdBQBhKAacdAaCDjM
av&AYq	AAbqb"1"fIffhjjAa!eQqsUlOffhjj[AacdAacEkN FF1Iq	!
B$QA>8C{{3S 12 ''#,C#a!*s2Aw.12AruuQC!I-..Cag,s);;KAA Aa!fIJGQ12##Aa!A#gJ/A12##Aa!A#gJ/A %fYGQ)-)-*/$+	-Aq!Q1 	}"))QUU1RaR!V9-qRaRy9:;1
BQBF)C
ABF)C CJBBbzBJJrN"=>> 	)"'')++*-((*,,046 (,		
  46!!CC	$4  	S!T]S!W$$ HHJLLS!E5!nGEJJLNN"EFFBJJu-s7{;<ME1~% 9 : 	: 

NAr3   c           
      *   |j                         dvrt        d      t        j                  t	        | d            } t        j                  t	        |d            }t        j                  t	        |d            }t        j                  t	        |d            }t        j
                  |      rt        nt        }t        | ||f      D ]Y  \  }}	t        j
                  |	      rt        }t        j                  |	j                   r>t        dj                  d|                |j                  \  }
}|
| j                  d   k7  rt        d      |
|j                  d   k7  rt        d	      ||j                  d   k7  rt        d
      t        ||f      D ]l  \  }}	t        |	|	j                         j                  z
  d      t        j                  t        |	d            dz  kD  sQt        dj                  d|                |dk(  rEt!        |d      d   }|dk(  s%|t        j                  d      t        |d      z  k  rt        d      |duxs |du}|r'|t        j                  t	        |d            }t        j                  |j                   st        d      |
|j                  d   k7  rt        d      t!        |d      d   }|dk(  s%|t        j                  d      t        |d      z  k  rt        d      t        j
                  |      rt        }|_t        j                  t	        |d            }|j                  |j                  k7  rt        d      t        j
                  |      rt        }| ||||||
|||f
S )a  
    A helper function to validate the arguments supplied to the
    Riccati equation solvers. Any discrepancy found in the input
    matrices leads to a ``ValueError`` exception.

    Essentially, it performs:

        - a check whether the input is free of NaN and Infs
        - a pass for the data through ``numpy.atleast_2d()``
        - squareness check of the relevant arrays
        - shape consistency check of the arrays
        - singularity check of the relevant arrays
        - symmetricity check of the relevant matrices
        - a check whether the regular or the generalized version is asked.

    This function is used by ``solve_continuous_are`` and
    ``solve_discrete_are``.

    Parameters
    ----------
    a, b, q, r, e, s : array_like
        Input data
    eq_type : str
        Accepted arguments are 'care' and 'dare'.

    Returns
    -------
    a, b, q, r, e, s : ndarray
        Regularized input data
    m, n : int
        shape of the problem
    r_or_c : type
        Data type of the problem, returns float or complex
    gen_or_not : bool
        Type of the equation, True for generalized and False for regular ARE.

    )r   rb   z;Equation type unknown. Only 'care' and 'dare' is understoodTr5   r7   aqrr   z3Matrix a and b should have the same number of rows.r9   z3Matrix b and r should have the same number of cols.r   d   z(Matrix {} should be symmetric/hermitian.r   rb   F)
compute_uvre   rn   z!Matrix r is numerically singular.NzMatrix e should be square.z*Matrix a and e should have the same shape.z!Matrix e is numerically singular.z*Matrix b and s should have the same shape.)r^   rD   r$   r=   r   r@   rA   r>   r?   rB   rC   rE   r   r"   r:   r   r   )r'   r(   r)   r*   r   r,   eq_typerI   rJ   matr   r   min_svgeneralized_cases                 r2   ru   ru     s   N }}.. @ A 	A 	(>?A
(>?A
(>?A
(>?A *WFq!Qi(S??3Fxx#:AA%*MNN ) 77DAqAGGAJNOOAGGAJEFFAGGAJNOO q!f%Schhjll"A&DaL)A#)EE   &tCy 13 3 & &Q5)"-R<6BJJrN41:$==@AA }5=0FGA88QWW% !=>>AGGAJ !MNN u-b1F|v

2a(CC !DEEq! =0FGAww!''! !MNNq! aAq!Q6+;;;r3   )N)NNT)rb   )'__doc__rF   numpyr$   numpy.linalgr   r   r   r   r   _basicr	   r
   r   lapackr   _decomp_schurr   
_decomp_lur   
_decomp_qrr   
_decomp_qzr   _decompr   _special_matricesr   r   __all__r   r   r   rS   rX   r   r   r   ru    r3   r2   <module>r      sr    %   : : ; ; $      ' /9L6^Y$z +"4XvJZNbi<r3   