
    5[gh=                         d Z ddlZddlmZmZmZmZmZmZm	Z	m
Z
 ddlmZmZ ddlmZmZ ddlmZ g dZ	 	 dd	Zdd
Zd ZddZddZd Zy)zSVD decomposition functions.    N)zerosr_diagdotarccosarcsinwhereclip   )LinAlgError_datacopied)get_lapack_funcs_compute_lwork)_asarray_validated)svdsvdvalsdiagsvdorthsubspace_angles
null_spacec                    t        | |      }t        |j                        dk7  rt        d      |j                  \  }}|j                  dk(  rt        t        j                  d|j                              \  }	}
}t        j                  |d|
j                        }|ryt        j                  |||f|	j                        }t        j                  |      |d<   t        j                  |||f|j                        }t        j                  |      |d<   nHt        j                  ||df|	j                        }t        j                  |d|f|j                        }|r|||fS |S |xs t        ||       }t        |t              st        d	      |d
vrd| d}t        |      |dk(  r|r||kD  r||fn||f\  }}|rE||z  t        j                  t        j                         j"                  kD  rst        d| d| d      t#        ||z  ||z        }t#        ||z  ||z        t        j                  t        j                         j"                  kD  rt        d| d      ||dz   f}t%        ||fd      \  }}t'        ||j                  d   |j                  d   ||      } ||||||      \  }}}}|dkD  rt)        d      |dk  rt        d| z        |r|||fS |S )a.  
    Singular Value Decomposition.

    Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and
    a 1-D array ``s`` of singular values (real, non-negative) such that
    ``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with
    main diagonal ``s``.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    full_matrices : bool, optional
        If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``.
        If False, the shapes are ``(M, K)`` and ``(K, N)``, where
        ``K = min(M, N)``.
    compute_uv : bool, optional
        Whether to compute also ``U`` and ``Vh`` in addition to ``s``.
        Default is True.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    lapack_driver : {'gesdd', 'gesvd'}, optional
        Whether to use the more efficient divide-and-conquer approach
        (``'gesdd'``) or general rectangular approach (``'gesvd'``)
        to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
        Default is ``'gesdd'``.

        .. versionadded:: 0.18

    Returns
    -------
    U : ndarray
        Unitary matrix having left singular vectors as columns.
        Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`.
    s : ndarray
        The singular values, sorted in non-increasing order.
        Of shape (K,), with ``K = min(M, N)``.
    Vh : ndarray
        Unitary matrix having right singular vectors as rows.
        Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`.

    For ``compute_uv=False``, only ``s`` is returned.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svdvals : Compute singular values of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> m, n = 9, 6
    >>> a = rng.standard_normal((m, n)) + 1.j*rng.standard_normal((m, n))
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape,  s.shape, Vh.shape
    ((9, 9), (6,), (6, 6))

    Reconstruct the original matrix from the decomposition:

    >>> sigma = np.zeros((m, n))
    >>> for i in range(min(m, n)):
    ...     sigma[i, i] = s[i]
    >>> a1 = np.dot(U, np.dot(sigma, Vh))
    >>> np.allclose(a, a1)
    True

    Alternatively, use ``full_matrices=False`` (notice that the shape of
    ``U`` is then ``(m, n)`` instead of ``(m, m)``):

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, s.shape, Vh.shape
    ((9, 6), (6,), (6, 6))
    >>> S = np.diag(s)
    >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> np.allclose(s, s2)
    True

    check_finite   zexpected matrixr   dtype)r   )shaper   .zlapack_driver must be a string)gesddgesvdz/lapack_driver must be "gesdd" or "gesvd", not ""r   zIndexing a matrix size z x z)  would incur integer overflow in LAPACK.zIndexing a matrix of z7 elements would incur an in integer overflow in LAPACK._lwork	preferred)ilp64r   )
compute_uvfull_matrices)r$   lworkr%   overwrite_azSVD did not convergez0illegal value in %dth argument of internal gesdd)r   lenr   
ValueErrorsizer   npeyer   
empty_likeidentityr   
isinstancestr	TypeErroriinfoint32maxr   r   r   )ar%   r$   r'   r   lapack_drivera1mnu0s0v0suvmessagemax_mnmin_mnszfuncsgesXdgesXd_lworkr&   infos                           S/var/www/html/bid-api/venv/lib/python3.12/site-packages/scipy/linalg/_decomp_svd.pyr   r      s   ~ 
AL	9B
288}*++88DAq 
ww!|23
BMM"D9bAbhh?A[[^AcFbAbhh?A[[^AcFbAbhh?AbAbhh?Aa7NH5+b!"4KmS)899..CM?RST!!J#$q5!Qq!ff}rxx1555 #:6(#fX NM "M N N QZV,B1v:q6z*RXXbhh-?-C-CC #8 =L "L M M MH45E)%"kJE; ;RXXa[&0OE "5(5;PMAq!T ax011axK 5! " 	"!Qw    c                      t        | d||      S )a  
    Compute singular values of a matrix.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    s : (min(M, N),) ndarray
        The singular values, sorted in decreasing order.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svd : Compute the full singular value decomposition of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import svdvals
    >>> m = np.array([[1.0, 0.0],
    ...               [2.0, 3.0],
    ...               [1.0, 1.0],
    ...               [0.0, 2.0],
    ...               [1.0, 0.0]])
    >>> svdvals(m)
    array([ 4.28091555,  1.63516424])

    We can verify the maximum singular value of `m` by computing the maximum
    length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane.
    We approximate "all" the unit vectors with a large sample. Because
    of linearity, we only need the unit vectors with angles in [0, pi].

    >>> t = np.linspace(0, np.pi, 2000)
    >>> u = np.array([np.cos(t), np.sin(t)])
    >>> np.linalg.norm(m.dot(u), axis=0).max()
    4.2809152422538475

    `p` is a projection matrix with rank 1. With exact arithmetic,
    its singular values would be [1, 0, 0, 0].

    >>> v = np.array([0.1, 0.3, 0.9, 0.3])
    >>> p = np.outer(v, v)
    >>> svdvals(p)
    array([  1.00000000e+00,   2.02021698e-17,   1.56692500e-17,
             8.15115104e-34])

    The singular values of an orthogonal matrix are all 1. Here, we
    create a random orthogonal matrix by using the `rvs()` method of
    `scipy.stats.ortho_group`.

    >>> from scipy.stats import ortho_group
    >>> orth = ortho_group.rvs(4)
    >>> svdvals(orth)
    array([ 1.,  1.,  1.,  1.])

    r   )r$   r'   r   )r   )r5   r'   r   s      rH   r   r      s    P qQK(* *rI   c                    t        |       }|j                  j                  }t        |       }||k(  r't	        j
                  |t        |||z
  f|      f      S ||k(  rt        |t        ||z
  |f|      f   S t        d      )a  
    Construct the sigma matrix in SVD from singular values and size M, N.

    Parameters
    ----------
    s : (M,) or (N,) array_like
        Singular values
    M : int
        Size of the matrix whose singular values are `s`.
    N : int
        Size of the matrix whose singular values are `s`.

    Returns
    -------
    S : (M, N) ndarray
        The S-matrix in the singular value decomposition

    See Also
    --------
    svd : Singular value decomposition of a matrix
    svdvals : Compute singular values of a matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import diagsvd
    >>> vals = np.array([1, 2, 3])  # The array representing the computed svd
    >>> diagsvd(vals, 3, 4)
    array([[1, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 0]])
    >>> diagsvd(vals, 4, 3)
    array([[1, 0, 0],
           [0, 2, 0],
           [0, 0, 3],
           [0, 0, 0]])

    r   zLength of s must be M or N.)	r   r   charr(   r+   hstackr   r   r)   )r=   MNparttypMorNs         rH   r   r      s    N 7D
**//Cq6Dqyyy$q!a%j <=>>	$q1uaj4455677rI   c                 Z   t        | d      \  }}}|j                  d   |j                  d   }}|6t        j                  |j                        j
                  t        ||      z  }t        j                  |d      |z  }t        j                  ||kD  t              }|ddd|f   }	|	S )	a  
    Construct an orthonormal basis for the range of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).

    Returns
    -------
    Q : (M, K) ndarray
        Orthonormal basis for the range of A.
        K = effective rank of A, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    null_space : Matrix null space

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import orth
    >>> A = np.array([[2, 0, 0], [0, 5, 0]])  # rank 2 array
    >>> orth(A)
    array([[0., 1.],
           [1., 0.]])
    >>> orth(A.T)
    array([[0., 1.],
           [1., 0.],
           [0., 0.]])

    Fr%   r   r   N        initialr   )
r   r   r+   finfor   epsr4   amaxsumint
Arcondr>   r=   vhrN   rO   tolnumQs
             rH   r   r   .  s    L 1E*HAq"771:rxx{qA}!%%Aq	1
''!R
 5
(C
&&S
$C	!TcT'
AHrI   c                    t        | d      \  }}}|j                  d   |j                  d   }}|6t        j                  |j                        j
                  t        ||      z  }t        j                  |d      |z  }t        j                  ||kD  t              }||dddf   j                  j                         }	|	S )	a:  
    Construct an orthonormal basis for the null space of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).

    Returns
    -------
    Z : (N, K) ndarray
        Orthonormal basis for the null space of A.
        K = dimension of effective null space, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    orth : Matrix range

    Examples
    --------
    1-D null space:

    >>> import numpy as np
    >>> from scipy.linalg import null_space
    >>> A = np.array([[1, 1], [1, 1]])
    >>> ns = null_space(A)
    >>> ns * np.copysign(1, ns[0,0])  # Remove the sign ambiguity of the vector
    array([[ 0.70710678],
           [-0.70710678]])

    2-D null space:

    >>> from numpy.random import default_rng
    >>> rng = default_rng()
    >>> B = rng.random((3, 5))
    >>> Z = null_space(B)
    >>> Z.shape
    (5, 2)
    >>> np.allclose(B.dot(Z), 0)
    True

    The basis vectors are orthonormal (up to rounding error):

    >>> Z.T.dot(Z)
    array([[  1.00000000e+00,   6.92087741e-17],
           [  6.92087741e-17,   1.00000000e+00]])

    TrT   r   r   NrU   rV   r   )r   r   r+   rX   r   rY   r4   rZ   r[   r\   Tconjr]   s
             rH   r   r   ^  s    l 1D)HAq"771:rxx{qA}!%%Aq	1
''!R
 5
(C
&&S
$C
346
AHrI   c                    t        | d      } t        | j                        dk7  rt        d| j                         t	        |       }~ t        |d      }t        |j                        dk7  rt        d|j                         t        |      t        |      k7  r+t        d|j                  d    d|j                  d          t	        |      }~t        |j                  j                         |      }t        |      }|j                  d   |j                  d   k\  r|t        ||      z
  }n'|t        ||j                  j                               z
  }~~~|dz  d	k\  }|j                         r"t        t        t        |d
      dd            }nd}t        ||t        t        |ddd   dd                  }|S )a  
    Compute the subspace angles between two matrices.

    Parameters
    ----------
    A : (M, N) array_like
        The first input array.
    B : (M, K) array_like
        The second input array.

    Returns
    -------
    angles : ndarray, shape (min(N, K),)
        The subspace angles between the column spaces of `A` and `B` in
        descending order.

    See Also
    --------
    orth
    svd

    Notes
    -----
    This computes the subspace angles according to the formula
    provided in [1]_. For equivalence with MATLAB and Octave behavior,
    use ``angles[0]``.

    .. versionadded:: 1.0

    References
    ----------
    .. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces
           in an A-Based Scalar Product: Algorithms and Perturbation
           Estimates. SIAM J. Sci. Comput. 23:2008-2040.

    Examples
    --------
    An Hadamard matrix, which has orthogonal columns, so we expect that
    the suspace angle to be :math:`\frac{\pi}{2}`:

    >>> import numpy as np
    >>> from scipy.linalg import hadamard, subspace_angles
    >>> rng = np.random.default_rng()
    >>> H = hadamard(4)
    >>> print(H)
    [[ 1  1  1  1]
     [ 1 -1  1 -1]
     [ 1  1 -1 -1]
     [ 1 -1 -1  1]]
    >>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:]))
    array([ 90.,  90.])

    And the subspace angle of a matrix to itself should be zero:

    >>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
    array([ True,  True], dtype=bool)

    The angles between non-orthogonal subspaces are in between these extremes:

    >>> x = rng.standard_normal((4, 3))
    >>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
    array([ 55.832])  # random
    Tr   r   zexpected 2D array, got shape z/A and B must have the same number of rows, got r   z and r   g      ?)r'   g      g      ?rU   N)r   r(   r   r)   r   r   re   rf   r   anyr   r
   r	   r   )	r^   BQAQBQA_H_QBsigmamask	mu_arcsinthetas	            rH   r   r     s   F 	140A
177|q8	BCC	aB	140A
177|q8	BCC
1vRJHHQK=aggaj\; < 	<	aB	 "$$))+r"GGE 
xx{bhhqk!R!!R)**
B A:Dxxz4t <c2FG		
 $	6$uTrT{C*D#EFELrI   )TTFTr   )FT)N)__doc__numpyr+   r   r   r   r   r   r   r	   r
   _miscr   r   lapackr   r   _decompr   __all__r   r   r   r   r   r    rI   rH   <module>ry      sS    "  C C C , 4 '
P =B)0^BI*X/8h-`=@hrI   