
    5[g#                     V    d dl mZ d dlZd dlmZ d dlmZmZ ddl	m
Z
mZ dgZ	 	 d	dZy)
    )IterableN)_asarray_validated)
block_diagLinAlgError   )_compute_lworkget_lapack_funcscossinc                 
   |s|r|dn
t        |      }|dn
t        |      }t        | d      } t        j                  | j                   st        d| j                         | j                  d   }||k\  s|dk  rt        d| d| j                  d    d	      ||k\  s|dk  rt        d
| d| j                  d    d	      | d|d|f   | d||df   | |dd|f   | |d|df   f\  }}	}
}n3t        | t              st        d      t        |       dk7  rt        dt        |              d | D        \  }}	}
}t        g d||	|
|g      D ]%  \  }}|j                  d   dk(  st        | d       |j                  \  }}|j                  \  }}|	j                  ||fk7  rt        d||f d|	j                         |
j                  ||fk7  rt        d||f d|
j                         ||z   ||z   k7  r!t        dj                  ||z   ||z               ||z   }t        ||	|
|fD cg c]  }t        j                  |       c}      }|rdnd}t        ||dz   g||	|
|g      \  }}t        ||||      }|r|d   |d   dnd|i} |d#||	|
|||||d|d
|^ }}}}}}}|j                  |z   }|dk  rt        d|  d|       |dkD  rt!        | d |       |r	||f|||ffS t#        ||      }t#        ||      } t        j$                  t        j&                  |            }!t        j$                  t        j(                  |            }"t+        ||||z
  ||z
        }#t+        ||      |#z
  }$t+        |||z
        |#z
  }%t+        ||z
  |      |#z
  }&t+        ||z
  ||z
        |#z
  }'t        j,                  t        j.                  |$|%|&|'|#g      |j0                  !      }(t        j2                  ||f|j0                  !      })|(d|$d|$f   |)d|$d|$f<   |$|#z   }*|$|#z   |%z   }+|$|&z   |'z   d"|#z  z   },|$|&z   |'z   d"|#z  z   |%z   }-|r|(d|%d|%f   n|(d|%d|%f    |)|*|+|,|-f<   ||'z   |#z   }*||'z   |#z   |&z   }+|$|#z   },|$|#z   |&z   }-|r|(d|&d|&f    n
|(d|&d|&f   |)|*|+|,|-f<   |(d|'d|'f   |)|||'z   |||'z   f<   |!|)|$|$|#z   |$|$|#z   f<   |!|)||'z   ||'z   |#z   |#|&z   |'z   d"|#z  |&z   |'z   f<   |$}*|$|#z   }+|$|&z   |'z   |#z   },|$|&z   |'z   d"|#z  z   }-|r|"n|" |)|*|+|,|-f<   |r|" n|"|)||'z   ||'z   |#z   |$|$|#z   f<   ||)| fS c c}w )$u  
    Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.

    X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following
    where upper left block has the shape of ``(p, q)``::

                                   ┌                   ┐
                                   │ I  0  0 │ 0  0  0 │
        ┌           ┐   ┌         ┐│ 0  C  0 │ 0 -S  0 │┌         ┐*
        │ X11 │ X12 │   │ U1 │    ││ 0  0  0 │ 0  0 -I ││ V1 │    │
        │ ────┼──── │ = │────┼────││─────────┼─────────││────┼────│
        │ X21 │ X22 │   │    │ U2 ││ 0  0  0 │ I  0  0 ││    │ V2 │
        └           ┘   └         ┘│ 0  S  0 │ 0  C  0 │└         ┘
                                   │ 0  0  I │ 0  0  0 │
                                   └                   ┘

    ``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of
    dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)``
    respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal
    matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``.

    Moreover, the rank of the identity matrices are ``min(p, q) - r``,
    ``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r``
    respectively.

    X can be supplied either by itself and block specifications p, q or its
    subblocks in an iterable from which the shapes would be derived. See the
    examples below.

    Parameters
    ----------
    X : array_like, iterable
        complex unitary or real orthogonal matrix to be decomposed, or iterable
        of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are
        omitted.
    p : int, optional
        Number of rows of the upper left block ``X11``, used only when X is
        given as an array.
    q : int, optional
        Number of columns of the upper left block ``X11``, used only when X is
        given as an array.
    separate : bool, optional
        if ``True``, the low level components are returned instead of the
        matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of
        ``u``, ``cs``, ``vh``.
    swap_sign : bool, optional
        if ``True``, the ``-S``, ``-I`` block will be the bottom left,
        otherwise (by default) they will be in the upper right block.
    compute_u : bool, optional
        if ``False``, ``u`` won't be computed and an empty array is returned.
    compute_vh : bool, optional
        if ``False``, ``vh`` won't be computed and an empty array is returned.

    Returns
    -------
    u : ndarray
        When ``compute_u=True``, contains the block diagonal orthogonal/unitary
        matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2``
        (``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``,
        this contains the tuple of ``(U1, U2)``.
    cs : ndarray
        The cosine-sine factor with the structure described above.
         If ``separate=True``, this contains the ``theta`` array containing the
         angles in radians.
    vh : ndarray
        When ``compute_vh=True`, contains the block diagonal orthogonal/unitary
        matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H``
        (``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``,
        this contains the tuple of ``(V1H, V2H)``.

    References
    ----------
    .. [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
           Algorithms, 50(1):33-65, 2009.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import cossin
    >>> from scipy.stats import unitary_group
    >>> x = unitary_group.rvs(4)
    >>> u, cs, vdh = cossin(x, p=2, q=2)
    >>> np.allclose(x, u @ cs @ vdh)
    True

    Same can be entered via subblocks without the need of ``p`` and ``q``. Also
    let's skip the computation of ``u``

    >>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]),
    ...                      compute_u=False)
    >>> print(ue)
    []
    >>> np.allclose(x, u @ cs @ vdh)
    True

    Nr   T)check_finitez=Cosine Sine decomposition only supports square matrices, got r   z
invalid p=z, 0<p<z
 must holdz
invalid q=z, 0<q<zJWhen p and q are None, X must be an Iterable containing the subblocks of X   z?When p and q are None, exactly four arrays should be in X, got c              3   F   K   | ]  }t        j                  |        y w)N)np
atleast_2d).0xs     V/var/www/html/bid-api/venv/lib/python3.12/site-packages/scipy/linalg/_decomp_cossin.py	<genexpr>zcossin.<locals>.<genexpr>   s     :1bmmA.s   !)x11x12x21x22z can't be emptyz Invalid x12 dimensions: desired z, got z Invalid x21 dimensions: desired zThe subblocks have compatible sizes but don't form a square array (instead they form a {}x{} array). This might be due to missing p, q arguments.uncsdorcsd_lwork)mpq)lworklrworkr   F)
r   r   r   r   
compute_u1
compute_u2compute_v1tcompute_v2ttranssignszillegal value in argument z of internal z did not converge: )dtype    )intr   r   equalshape
ValueError
isinstancer   lenzipformatanyiscomplexobjr	   r   typecoder   r   diagcossinmineyemaxr'   zeros).Xr   r   separate	swap_sign	compute_u
compute_vhr   r   r   r   r   nameblockmmpmmqr   cplxdrivercsd	csd_lworkr   
lwork_args_thetau1u2v1hv2hinfomethod_nameUVDHcsrn11n12n21n22IdCSxsxeysyes.                                                 r   r
   r
      s   F 	AAAAAqt4xx! //0wwi9 : :GGAJ6Q!Vz!F1771:,jIJJ6Q!Vz!F1771:,jIJJrr2A2vY"1"ab&	1QR!V9aABiGS#s8$ : ; 	; q6Q; 558VH> ? ? ;:S#s; #S#s35KD%{{1~" D6!9::5 yy199S99C ?Cz J$$'II;0 1 1 99a ?az J$$'II;0 1 1 s7a#g / 06va#gq3w/GI I
 GS#sC,@A,@q",@ABDW'F%vv/@&A'*Cc&:<NC9Q!4E=AE!Ha9E" (+ ):#37@7@8B8B27y): /9):%Qr2sC ,,'Kax5teW =((3}6 7 	7ax[M)<TFCDDBxc
**2rA
S#
C 	uA
uAAq!a%QA
a)a-C
aQ-!
C
a!eQ-!
C
a!eQU
a
C	S#sA./u{{	CB	1a&	,Bdsd
^BttTcTzN	qB	q3B	sS1q5	 B	sS1q5	 3	&B*34C4#:"TcT4C4Z.Br2vr"u}	
S1B	
S1u	B	qB	q3B*34C4#:DSD$3$JBr"ube|!$3$*~BqSy!AG)#$Bs37{CaK ?@Bq3wq3w{AGcM!a%#+*;;;<	B	qB	sS1	B	sS1q5	 B%qA2Br"ube|1:A2Bq3wq3w{CaK'(b#:C Bs   6U)NNFFTT)collections.abcr   numpyr   scipy._lib._utilr   scipy.linalgr   r   lapackr   r	   __all__r
   r)       r   <module>rh      s)    $  / 0 4* (-7;Rrg   