<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">import numbers
import pickle
import warnings
from copy import deepcopy
from functools import partial

import joblib
import numpy as np
import pytest
from numpy.testing import assert_allclose

from sklearn import config_context
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.cluster import KMeans
from sklearn.datasets import (
    load_diabetes,
    make_blobs,
    make_classification,
    make_multilabel_classification,
    make_regression,
)
from sklearn.linear_model import LogisticRegression, Perceptron, Ridge
from sklearn.metrics import (
    accuracy_score,
    average_precision_score,
    balanced_accuracy_score,
    brier_score_loss,
    check_scoring,
    f1_score,
    fbeta_score,
    get_scorer,
    get_scorer_names,
    jaccard_score,
    log_loss,
    make_scorer,
    matthews_corrcoef,
    precision_score,
    r2_score,
    recall_score,
    roc_auc_score,
    top_k_accuracy_score,
)
from sklearn.metrics import cluster as cluster_module
from sklearn.metrics._scorer import (
    _check_multimetric_scoring,
    _CurveScorer,
    _MultimetricScorer,
    _PassthroughScorer,
    _Scorer,
)
from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC
from sklearn.tests.metadata_routing_common import (
    assert_request_is_empty,
)
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.utils._testing import (
    assert_almost_equal,
    assert_array_equal,
    ignore_warnings,
)
from sklearn.utils.metadata_routing import MetadataRouter, MethodMapping

REGRESSION_SCORERS = [
    "d2_absolute_error_score",
    "explained_variance",
    "r2",
    "neg_mean_absolute_error",
    "neg_mean_squared_error",
    "neg_mean_absolute_percentage_error",
    "neg_mean_squared_log_error",
    "neg_median_absolute_error",
    "neg_root_mean_squared_error",
    "neg_root_mean_squared_log_error",
    "mean_absolute_error",
    "mean_absolute_percentage_error",
    "mean_squared_error",
    "median_absolute_error",
    "neg_max_error",
    "neg_mean_poisson_deviance",
    "neg_mean_gamma_deviance",
]

CLF_SCORERS = [
    "accuracy",
    "balanced_accuracy",
    "top_k_accuracy",
    "f1",
    "f1_weighted",
    "f1_macro",
    "f1_micro",
    "roc_auc",
    "average_precision",
    "precision",
    "precision_weighted",
    "precision_macro",
    "precision_micro",
    "recall",
    "recall_weighted",
    "recall_macro",
    "recall_micro",
    "neg_log_loss",
    "neg_brier_score",
    "jaccard",
    "jaccard_weighted",
    "jaccard_macro",
    "jaccard_micro",
    "roc_auc_ovr",
    "roc_auc_ovo",
    "roc_auc_ovr_weighted",
    "roc_auc_ovo_weighted",
    "matthews_corrcoef",
    "positive_likelihood_ratio",
    "neg_negative_likelihood_ratio",
]

# All supervised cluster scorers (They behave like classification metric)
CLUSTER_SCORERS = [
    "adjusted_rand_score",
    "rand_score",
    "homogeneity_score",
    "completeness_score",
    "v_measure_score",
    "mutual_info_score",
    "adjusted_mutual_info_score",
    "normalized_mutual_info_score",
    "fowlkes_mallows_score",
]

MULTILABEL_ONLY_SCORERS = [
    "precision_samples",
    "recall_samples",
    "f1_samples",
    "jaccard_samples",
]

REQUIRE_POSITIVE_Y_SCORERS = ["neg_mean_poisson_deviance", "neg_mean_gamma_deviance"]


def _require_positive_y(y):
    """Make targets strictly positive"""
    offset = abs(y.min()) + 1
    y = y + offset
    return y


def _make_estimators(X_train, y_train, y_ml_train):
    # Make estimators that make sense to test various scoring methods
    sensible_regr = DecisionTreeRegressor(random_state=0)
    # some of the regressions scorers require strictly positive input.
    sensible_regr.fit(X_train, _require_positive_y(y_train))
    sensible_clf = DecisionTreeClassifier(random_state=0)
    sensible_clf.fit(X_train, y_train)
    sensible_ml_clf = DecisionTreeClassifier(random_state=0)
    sensible_ml_clf.fit(X_train, y_ml_train)
    return dict(
        [(name, sensible_regr) for name in REGRESSION_SCORERS]
        + [(name, sensible_clf) for name in CLF_SCORERS]
        + [(name, sensible_clf) for name in CLUSTER_SCORERS]
        + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
    )


@pytest.fixture(scope="module")
def memmap_data_and_estimators(tmp_path_factory):
    temp_folder = tmp_path_factory.mktemp("sklearn_test_score_objects")
    X, y = make_classification(n_samples=30, n_features=5, random_state=0)
    _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0)
    filename = temp_folder / "test_data.pkl"
    joblib.dump((X, y, y_ml), filename)
    X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode="r")
    estimators = _make_estimators(X_mm, y_mm, y_ml_mm)

    yield X_mm, y_mm, y_ml_mm, estimators


class EstimatorWithFit(BaseEstimator):
    """Dummy estimator to test scoring validators"""

    def fit(self, X, y):
        return self


class EstimatorWithFitAndScore(BaseEstimator):
    """Dummy estimator to test scoring validators"""

    def fit(self, X, y):
        return self

    def score(self, X, y):
        return 1.0


class EstimatorWithFitAndPredict(BaseEstimator):
    """Dummy estimator to test scoring validators"""

    def fit(self, X, y):
        self.y = y
        return self

    def predict(self, X):
        return self.y


class DummyScorer:
    """Dummy scorer that always returns 1."""

    def __call__(self, est, X, y):
        return 1


def test_all_scorers_repr():
    # Test that all scorers have a working repr
    for name in get_scorer_names():
        repr(get_scorer(name))


def check_scoring_validator_for_single_metric_usecases(scoring_validator):
    # Test all branches of single metric usecases
    estimator = EstimatorWithFitAndScore()
    estimator.fit([[1]], [1])
    scorer = scoring_validator(estimator)
    assert isinstance(scorer, _PassthroughScorer)
    assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)

    estimator = EstimatorWithFitAndPredict()
    estimator.fit([[1]], [1])
    pattern = (
        r"If no scoring is specified, the estimator passed should have"
        r" a 'score' method\. The estimator .* does not\."
    )
    with pytest.raises(TypeError, match=pattern):
        scoring_validator(estimator)

    scorer = scoring_validator(estimator, scoring="accuracy")
    assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0)

    estimator = EstimatorWithFit()
    scorer = scoring_validator(estimator, scoring="accuracy")
    assert isinstance(scorer, _Scorer)
    assert scorer._response_method == "predict"

    # Test the allow_none parameter for check_scoring alone
    if scoring_validator is check_scoring:
        estimator = EstimatorWithFit()
        scorer = scoring_validator(estimator, allow_none=True)
        assert scorer is None


@pytest.mark.parametrize(
    "scoring",
    (
        ("accuracy",),
        ["precision"],
        {"acc": "accuracy", "precision": "precision"},
        ("accuracy", "precision"),
        ["precision", "accuracy"],
        {
            "accuracy": make_scorer(accuracy_score),
            "precision": make_scorer(precision_score),
        },
    ),
    ids=[
        "single_tuple",
        "single_list",
        "dict_str",
        "multi_tuple",
        "multi_list",
        "dict_callable",
    ],
)
def test_check_scoring_and_check_multimetric_scoring(scoring):
    check_scoring_validator_for_single_metric_usecases(check_scoring)
    # To make sure the check_scoring is correctly applied to the constituent
    # scorers

    estimator = LinearSVC(random_state=0)
    estimator.fit([[1], [2], [3]], [1, 1, 0])

    scorers = _check_multimetric_scoring(estimator, scoring)
    assert isinstance(scorers, dict)
    assert sorted(scorers.keys()) == sorted(list(scoring))
    assert all([isinstance(scorer, _Scorer) for scorer in list(scorers.values())])
    assert all(scorer._response_method == "predict" for scorer in scorers.values())

    if "acc" in scoring:
        assert_almost_equal(
            scorers["acc"](estimator, [[1], [2], [3]], [1, 0, 0]), 2.0 / 3.0
        )
    if "accuracy" in scoring:
        assert_almost_equal(
            scorers["accuracy"](estimator, [[1], [2], [3]], [1, 0, 0]), 2.0 / 3.0
        )
    if "precision" in scoring:
        assert_almost_equal(
            scorers["precision"](estimator, [[1], [2], [3]], [1, 0, 0]), 0.5
        )


@pytest.mark.parametrize(
    "scoring, msg",
    [
        (
            (make_scorer(precision_score), make_scorer(accuracy_score)),
            "One or more of the elements were callables",
        ),
        ([5], "Non-string types were found"),
        ((make_scorer(precision_score),), "One or more of the elements were callables"),
        ((), "Empty list was given"),
        (("f1", "f1"), "Duplicate elements were found"),
        ({4: "accuracy"}, "Non-string types were found in the keys"),
        ({}, "An empty dict was passed"),
    ],
    ids=[
        "tuple of callables",
        "list of int",
        "tuple of one callable",
        "empty tuple",
        "non-unique str",
        "non-string key dict",
        "empty dict",
    ],
)
def test_check_scoring_and_check_multimetric_scoring_errors(scoring, msg):
    # Make sure it raises errors when scoring parameter is not valid.
    # More weird corner cases are tested at test_validation.py
    estimator = EstimatorWithFitAndPredict()
    estimator.fit([[1]], [1])

    with pytest.raises(ValueError, match=msg):
        _check_multimetric_scoring(estimator, scoring=scoring)


def test_check_scoring_gridsearchcv():
    # test that check_scoring works on GridSearchCV and pipeline.
    # slightly redundant non-regression test.

    grid = GridSearchCV(LinearSVC(), param_grid={"C": [0.1, 1]}, cv=3)
    scorer = check_scoring(grid, scoring="f1")
    assert isinstance(scorer, _Scorer)
    assert scorer._response_method == "predict"

    pipe = make_pipeline(LinearSVC())
    scorer = check_scoring(pipe, scoring="f1")
    assert isinstance(scorer, _Scorer)
    assert scorer._response_method == "predict"

    # check that cross_val_score definitely calls the scorer
    # and doesn't make any assumptions about the estimator apart from having a
    # fit.
    scores = cross_val_score(
        EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer(), cv=3
    )
    assert_array_equal(scores, 1)


@pytest.mark.parametrize(
    "scorer_name, metric",
    [
        ("f1", f1_score),
        ("f1_weighted", partial(f1_score, average="weighted")),
        ("f1_macro", partial(f1_score, average="macro")),
        ("f1_micro", partial(f1_score, average="micro")),
        ("precision", precision_score),
        ("precision_weighted", partial(precision_score, average="weighted")),
        ("precision_macro", partial(precision_score, average="macro")),
        ("precision_micro", partial(precision_score, average="micro")),
        ("recall", recall_score),
        ("recall_weighted", partial(recall_score, average="weighted")),
        ("recall_macro", partial(recall_score, average="macro")),
        ("recall_micro", partial(recall_score, average="micro")),
        ("jaccard", jaccard_score),
        ("jaccard_weighted", partial(jaccard_score, average="weighted")),
        ("jaccard_macro", partial(jaccard_score, average="macro")),
        ("jaccard_micro", partial(jaccard_score, average="micro")),
        ("top_k_accuracy", top_k_accuracy_score),
        ("matthews_corrcoef", matthews_corrcoef),
    ],
)
def test_classification_binary_scores(scorer_name, metric):
    # check consistency between score and scorer for scores supporting
    # binary classification.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LinearSVC(random_state=0)
    clf.fit(X_train, y_train)

    score = get_scorer(scorer_name)(clf, X_test, y_test)
    expected_score = metric(y_test, clf.predict(X_test))
    assert_almost_equal(score, expected_score)


@pytest.mark.parametrize(
    "scorer_name, metric",
    [
        ("accuracy", accuracy_score),
        ("balanced_accuracy", balanced_accuracy_score),
        ("f1_weighted", partial(f1_score, average="weighted")),
        ("f1_macro", partial(f1_score, average="macro")),
        ("f1_micro", partial(f1_score, average="micro")),
        ("precision_weighted", partial(precision_score, average="weighted")),
        ("precision_macro", partial(precision_score, average="macro")),
        ("precision_micro", partial(precision_score, average="micro")),
        ("recall_weighted", partial(recall_score, average="weighted")),
        ("recall_macro", partial(recall_score, average="macro")),
        ("recall_micro", partial(recall_score, average="micro")),
        ("jaccard_weighted", partial(jaccard_score, average="weighted")),
        ("jaccard_macro", partial(jaccard_score, average="macro")),
        ("jaccard_micro", partial(jaccard_score, average="micro")),
    ],
)
def test_classification_multiclass_scores(scorer_name, metric):
    # check consistency between score and scorer for scores supporting
    # multiclass classification.
    X, y = make_classification(
        n_classes=3, n_informative=3, n_samples=30, random_state=0
    )

    # use `stratify` = y to ensure train and test sets capture all classes
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, random_state=0, stratify=y
    )

    clf = DecisionTreeClassifier(random_state=0)
    clf.fit(X_train, y_train)
    score = get_scorer(scorer_name)(clf, X_test, y_test)
    expected_score = metric(y_test, clf.predict(X_test))
    assert score == pytest.approx(expected_score)


def test_custom_scorer_pickling():
    # test that custom scorer can be pickled
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LinearSVC(random_state=0)
    clf.fit(X_train, y_train)

    scorer = make_scorer(fbeta_score, beta=2)
    score1 = scorer(clf, X_test, y_test)
    unpickled_scorer = pickle.loads(pickle.dumps(scorer))
    score2 = unpickled_scorer(clf, X_test, y_test)
    assert score1 == pytest.approx(score2)

    # smoke test the repr:
    repr(fbeta_score)


def test_regression_scorers():
    # Test regression scorers.
    diabetes = load_diabetes()
    X, y = diabetes.data, diabetes.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = Ridge()
    clf.fit(X_train, y_train)
    score1 = get_scorer("r2")(clf, X_test, y_test)
    score2 = r2_score(y_test, clf.predict(X_test))
    assert_almost_equal(score1, score2)


def test_thresholded_scorers():
    # Test scorers that take thresholds.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LogisticRegression(random_state=0)
    clf.fit(X_train, y_train)
    score1 = get_scorer("roc_auc")(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)
    assert_almost_equal(score1, score3)

    logscore = get_scorer("neg_log_loss")(clf, X_test, y_test)
    logloss = log_loss(y_test, clf.predict_proba(X_test))
    assert_almost_equal(-logscore, logloss)

    # same for an estimator without decision_function
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    score1 = get_scorer("roc_auc")(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)

    # test with a regressor (no decision_function)
    reg = DecisionTreeRegressor()
    reg.fit(X_train, y_train)
    err_msg = "DecisionTreeRegressor has none of the following attributes"
    with pytest.raises(AttributeError, match=err_msg):
        get_scorer("roc_auc")(reg, X_test, y_test)

    # Test that an exception is raised on more than two classes
    X, y = make_blobs(random_state=0, centers=3)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf.fit(X_train, y_train)
    with pytest.raises(ValueError, match="multi_class must be in \\('ovo', 'ovr'\\)"):
        get_scorer("roc_auc")(clf, X_test, y_test)

    # test error is raised with a single class present in model
    # (predict_proba shape is not suitable for binary auc)
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = DecisionTreeClassifier()
    clf.fit(X_train, np.zeros_like(y_train))
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer("roc_auc")(clf, X_test, y_test)

    # for proba scorers
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer("neg_log_loss")(clf, X_test, y_test)


def test_thresholded_scorers_multilabel_indicator_data():
    # Test that the scorer work with multilabel-indicator format
    # for multilabel and multi-output multi-class classifier
    X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    # Multi-output multi-class predict_proba
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    y_proba = clf.predict_proba(X_test)
    score1 = get_scorer("roc_auc")(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, np.vstack([p[:, -1] for p in y_proba]).T)
    assert_almost_equal(score1, score2)

    # Multilabel predict_proba
    clf = OneVsRestClassifier(DecisionTreeClassifier())
    clf.fit(X_train, y_train)
    score1 = get_scorer("roc_auc")(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test))
    assert_almost_equal(score1, score2)

    # Multilabel decision function
    clf = OneVsRestClassifier(LinearSVC(random_state=0))
    clf.fit(X_train, y_train)
    score1 = get_scorer("roc_auc")(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    assert_almost_equal(score1, score2)


def test_supervised_cluster_scorers():
    # Test clustering scorers against gold standard labeling.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    km = KMeans(n_clusters=3, n_init="auto")
    km.fit(X_train)
    for name in CLUSTER_SCORERS:
        score1 = get_scorer(name)(km, X_test, y_test)
        score2 = getattr(cluster_module, name)(y_test, km.predict(X_test))
        assert_almost_equal(score1, score2)


def test_raises_on_score_list():
    # Test that when a list of scores is returned, we raise proper errors.
    X, y = make_blobs(random_state=0)
    f1_scorer_no_average = make_scorer(f1_score, average=None)
    clf = DecisionTreeClassifier()
    with pytest.raises(ValueError):
        cross_val_score(clf, X, y, scoring=f1_scorer_no_average)
    grid_search = GridSearchCV(
        clf, scoring=f1_scorer_no_average, param_grid={"max_depth": [1, 2]}
    )
    with pytest.raises(ValueError):
        grid_search.fit(X, y)


def test_classification_scorer_sample_weight():
    # Test that classification scorers support sample_weight or raise sensible
    # errors

    # Unlike the metrics invariance test, in the scorer case it's harder
    # to ensure that, on the classifier output, weighted and unweighted
    # scores really should be unequal.
    X, y = make_classification(random_state=0)
    _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0)
    split = train_test_split(X, y, y_ml, random_state=0)
    X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split

    sample_weight = np.ones_like(y_test)
    sample_weight[:10] = 0

    # get sensible estimators for each metric
    estimator = _make_estimators(X_train, y_train, y_ml_train)

    for name in get_scorer_names():
        scorer = get_scorer(name)
        if name in REGRESSION_SCORERS:
            # skip the regression scores
            continue
        if name == "top_k_accuracy":
            # in the binary case k &gt; 1 will always lead to a perfect score
            scorer._kwargs = {"k": 1}
        if name in MULTILABEL_ONLY_SCORERS:
            target = y_ml_test
        else:
            target = y_test
        try:
            weighted = scorer(
                estimator[name], X_test, target, sample_weight=sample_weight
            )
            ignored = scorer(estimator[name], X_test[10:], target[10:])
            unweighted = scorer(estimator[name], X_test, target)
            # this should not raise. sample_weight should be ignored if None.
            _ = scorer(estimator[name], X_test[:10], target[:10], sample_weight=None)
            assert weighted != unweighted, (
                f"scorer {name} behaves identically when called with "
                f"sample weights: {weighted} vs {unweighted}"
            )
            assert_almost_equal(
                weighted,
                ignored,
                err_msg=(
                    f"scorer {name} behaves differently "
                    "when ignoring samples and setting "
                    f"sample_weight to 0: {weighted} vs {ignored}"
                ),
            )

        except TypeError as e:
            assert "sample_weight" in str(e), (
                f"scorer {name} raises unhelpful exception when called "
                f"with sample weights: {str(e)}"
            )


def test_regression_scorer_sample_weight():
    # Test that regression scorers support sample_weight or raise sensible
    # errors

    # Odd number of test samples req for neg_median_absolute_error
    X, y = make_regression(n_samples=101, n_features=20, random_state=0)
    y = _require_positive_y(y)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    sample_weight = np.ones_like(y_test)
    # Odd number req for neg_median_absolute_error
    sample_weight[:11] = 0

    reg = DecisionTreeRegressor(random_state=0)
    reg.fit(X_train, y_train)

    for name in get_scorer_names():
        scorer = get_scorer(name)
        if name not in REGRESSION_SCORERS:
            # skip classification scorers
            continue
        try:
            weighted = scorer(reg, X_test, y_test, sample_weight=sample_weight)
            ignored = scorer(reg, X_test[11:], y_test[11:])
            unweighted = scorer(reg, X_test, y_test)
            assert weighted != unweighted, (
                f"scorer {name} behaves identically when called with "
                f"sample weights: {weighted} vs {unweighted}"
            )
            assert_almost_equal(
                weighted,
                ignored,
                err_msg=(
                    f"scorer {name} behaves differently "
                    "when ignoring samples and setting "
                    f"sample_weight to 0: {weighted} vs {ignored}"
                ),
            )

        except TypeError as e:
            assert "sample_weight" in str(e), (
                f"scorer {name} raises unhelpful exception when called "
                f"with sample weights: {str(e)}"
            )


@pytest.mark.parametrize("name", get_scorer_names())
def test_scorer_memmap_input(name, memmap_data_and_estimators):
    # Non-regression test for #6147: some score functions would
    # return singleton memmap when computed on memmap data instead of scalar
    # float values.
    X_mm, y_mm, y_ml_mm, estimators = memmap_data_and_estimators

    if name in REQUIRE_POSITIVE_Y_SCORERS:
        y_mm_1 = _require_positive_y(y_mm)
        y_ml_mm_1 = _require_positive_y(y_ml_mm)
    else:
        y_mm_1, y_ml_mm_1 = y_mm, y_ml_mm

    # UndefinedMetricWarning for P / R scores
    with ignore_warnings():
        scorer, estimator = get_scorer(name), estimators[name]
        if name in MULTILABEL_ONLY_SCORERS:
            score = scorer(estimator, X_mm, y_ml_mm_1)
        else:
            score = scorer(estimator, X_mm, y_mm_1)
        assert isinstance(score, numbers.Number), name


def test_scoring_is_not_metric():
    with pytest.raises(ValueError, match="make_scorer"):
        check_scoring(LogisticRegression(), scoring=f1_score)
    with pytest.raises(ValueError, match="make_scorer"):
        check_scoring(LogisticRegression(), scoring=roc_auc_score)
    with pytest.raises(ValueError, match="make_scorer"):
        check_scoring(Ridge(), scoring=r2_score)
    with pytest.raises(ValueError, match="make_scorer"):
        check_scoring(KMeans(), scoring=cluster_module.adjusted_rand_score)
    with pytest.raises(ValueError, match="make_scorer"):
        check_scoring(KMeans(), scoring=cluster_module.rand_score)


def test_deprecated_scorer():
    X, y = make_regression(n_samples=10, n_features=1, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    reg = DecisionTreeRegressor()
    reg.fit(X_train, y_train)
    deprecated_scorer = get_scorer("max_error")
    with pytest.warns(DeprecationWarning):
        deprecated_scorer(reg, X_test, y_test)


@pytest.mark.parametrize(
    (
        "scorers,expected_predict_count,"
        "expected_predict_proba_count,expected_decision_func_count"
    ),
    [
        (
            {
                "a1": "accuracy",
                "a2": "accuracy",
                "ll1": "neg_log_loss",
                "ll2": "neg_log_loss",
                "ra1": "roc_auc",
                "ra2": "roc_auc",
            },
            1,
            1,
            1,
        ),
        (["roc_auc", "accuracy"], 1, 0, 1),
        (["neg_log_loss", "accuracy"], 1, 1, 0),
    ],
)
def test_multimetric_scorer_calls_method_once(
    scorers,
    expected_predict_count,
    expected_predict_proba_count,
    expected_decision_func_count,
):
    X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])
    pos_proba = np.random.rand(X.shape[0])
    proba = np.c_[1 - pos_proba, pos_proba]

    class MyClassifier(ClassifierMixin, BaseEstimator):
        def __init__(self):
            self._expected_predict_count = 0
            self._expected_predict_proba_count = 0
            self._expected_decision_function_count = 0

        def fit(self, X, y):
            self.classes_ = np.unique(y)
            return self

        def predict(self, X):
            self._expected_predict_count += 1
            return y

        def predict_proba(self, X):
            self._expected_predict_proba_count += 1
            return proba

        def decision_function(self, X):
            self._expected_decision_function_count += 1
            return pos_proba

    mock_est = MyClassifier().fit(X, y)
    scorer_dict = _check_multimetric_scoring(LogisticRegression(), scorers)
    multi_scorer = _MultimetricScorer(scorers=scorer_dict)
    results = multi_scorer(mock_est, X, y)

    assert set(scorers) == set(results)  # compare dict keys

    assert mock_est._expected_predict_count == expected_predict_count
    assert mock_est._expected_predict_proba_count == expected_predict_proba_count
    assert mock_est._expected_decision_function_count == expected_decision_func_count


@pytest.mark.parametrize(
    "scorers",
    [
        (["roc_auc", "neg_log_loss"]),
        (
            {
                "roc_auc": make_scorer(
                    roc_auc_score,
                    response_method=["predict_proba", "decision_function"],
                ),
                "neg_log_loss": make_scorer(log_loss, response_method="predict_proba"),
            }
        ),
    ],
)
def test_multimetric_scorer_calls_method_once_classifier_no_decision(scorers):
    predict_proba_call_cnt = 0

    class MockKNeighborsClassifier(KNeighborsClassifier):
        def predict_proba(self, X):
            nonlocal predict_proba_call_cnt
            predict_proba_call_cnt += 1
            return super().predict_proba(X)

    X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])

    # no decision function
    clf = MockKNeighborsClassifier(n_neighbors=1)
    clf.fit(X, y)

    scorer_dict = _check_multimetric_scoring(clf, scorers)
    scorer = _MultimetricScorer(scorers=scorer_dict)
    scorer(clf, X, y)

    assert predict_proba_call_cnt == 1


def test_multimetric_scorer_calls_method_once_regressor_threshold():
    predict_called_cnt = 0

    class MockDecisionTreeRegressor(DecisionTreeRegressor):
        def predict(self, X):
            nonlocal predict_called_cnt
            predict_called_cnt += 1
            return super().predict(X)

    X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])

    # no decision function
    clf = MockDecisionTreeRegressor()
    clf.fit(X, y)

    scorers = {"neg_mse": "neg_mean_squared_error", "r2": "r2"}
    scorer_dict = _check_multimetric_scoring(clf, scorers)
    scorer = _MultimetricScorer(scorers=scorer_dict)
    scorer(clf, X, y)

    assert predict_called_cnt == 1


def test_multimetric_scorer_sanity_check():
    # scoring dictionary returned is the same as calling each scorer separately
    scorers = {
        "a1": "accuracy",
        "a2": "accuracy",
        "ll1": "neg_log_loss",
        "ll2": "neg_log_loss",
        "ra1": "roc_auc",
        "ra2": "roc_auc",
    }

    X, y = make_classification(random_state=0)

    clf = DecisionTreeClassifier()
    clf.fit(X, y)

    scorer_dict = _check_multimetric_scoring(clf, scorers)
    multi_scorer = _MultimetricScorer(scorers=scorer_dict)

    result = multi_scorer(clf, X, y)

    separate_scores = {
        name: get_scorer(name)(clf, X, y)
        for name in ["accuracy", "neg_log_loss", "roc_auc"]
    }

    for key, value in result.items():
        score_name = scorers[key]
        assert_allclose(value, separate_scores[score_name])


@pytest.mark.parametrize("raise_exc", [True, False])
def test_multimetric_scorer_exception_handling(raise_exc):
    """Check that the calling of the `_MultimetricScorer` returns
    exception messages in the result dict for the failing scorers
    in case of `raise_exc` is `False` and if `raise_exc` is `True`,
    then the proper exception is raised.
    """
    scorers = {
        "failing_1": "neg_mean_squared_log_error",
        "non_failing": "neg_median_absolute_error",
        "failing_2": "neg_mean_squared_log_error",
    }

    X, y = make_classification(
        n_samples=50, n_features=2, n_redundant=0, random_state=0
    )
    # neg_mean_squared_log_error fails if y contains values less than or equal to -1
    y *= -1

    clf = DecisionTreeClassifier().fit(X, y)

    scorer_dict = _check_multimetric_scoring(clf, scorers)
    multi_scorer = _MultimetricScorer(scorers=scorer_dict, raise_exc=raise_exc)

    error_msg = (
        "Mean Squared Logarithmic Error cannot be used when "
        "targets contain values less than or equal to -1."
    )

    if raise_exc:
        with pytest.raises(ValueError, match=error_msg):
            multi_scorer(clf, X, y)
    else:
        result = multi_scorer(clf, X, y)

        exception_message_1 = result["failing_1"]
        score = result["non_failing"]
        exception_message_2 = result["failing_2"]

        assert isinstance(exception_message_1, str) and error_msg in exception_message_1
        assert isinstance(score, float)
        assert isinstance(exception_message_2, str) and error_msg in exception_message_2


@pytest.mark.parametrize(
    "scorer_name, metric",
    [
        ("roc_auc_ovr", partial(roc_auc_score, multi_class="ovr")),
        ("roc_auc_ovo", partial(roc_auc_score, multi_class="ovo")),
        (
            "roc_auc_ovr_weighted",
            partial(roc_auc_score, multi_class="ovr", average="weighted"),
        ),
        (
            "roc_auc_ovo_weighted",
            partial(roc_auc_score, multi_class="ovo", average="weighted"),
        ),
    ],
)
def test_multiclass_roc_proba_scorer(scorer_name, metric):
    scorer = get_scorer(scorer_name)
    X, y = make_classification(
        n_classes=3, n_informative=3, n_samples=20, random_state=0
    )
    lr = LogisticRegression().fit(X, y)
    y_proba = lr.predict_proba(X)
    expected_score = metric(y, y_proba)

    assert scorer(lr, X, y) == pytest.approx(expected_score)


def test_multiclass_roc_proba_scorer_label():
    scorer = make_scorer(
        roc_auc_score,
        multi_class="ovo",
        labels=[0, 1, 2],
        response_method="predict_proba",
    )
    X, y = make_classification(
        n_classes=3, n_informative=3, n_samples=20, random_state=0
    )
    lr = LogisticRegression().fit(X, y)
    y_proba = lr.predict_proba(X)

    y_binary = y == 0
    expected_score = roc_auc_score(
        y_binary, y_proba, multi_class="ovo", labels=[0, 1, 2]
    )

    assert scorer(lr, X, y_binary) == pytest.approx(expected_score)


@pytest.mark.parametrize(
    "scorer_name",
    ["roc_auc_ovr", "roc_auc_ovo", "roc_auc_ovr_weighted", "roc_auc_ovo_weighted"],
)
def test_multiclass_roc_no_proba_scorer_errors(scorer_name):
    # Perceptron has no predict_proba
    scorer = get_scorer(scorer_name)
    X, y = make_classification(
        n_classes=3, n_informative=3, n_samples=20, random_state=0
    )
    lr = Perceptron().fit(X, y)
    msg = "Perceptron has none of the following attributes: predict_proba."
    with pytest.raises(AttributeError, match=msg):
        scorer(lr, X, y)


@pytest.fixture
def string_labeled_classification_problem():
    """Train a classifier on binary problem with string target.

    The classifier is trained on a binary classification problem where the
    minority class of interest has a string label that is intentionally not the
    greatest class label using the lexicographic order. In this case, "cancer"
    is the positive label, and `classifier.classes_` is
    `["cancer", "not cancer"]`.

    In addition, the dataset is imbalanced to better identify problems when
    using non-symmetric performance metrics such as f1-score, average precision
    and so on.

    Returns
    -------
    classifier : estimator object
        Trained classifier on the binary problem.
    X_test : ndarray of shape (n_samples, n_features)
        Data to be used as testing set in tests.
    y_test : ndarray of shape (n_samples,), dtype=object
        Binary target where labels are strings.
    y_pred : ndarray of shape (n_samples,), dtype=object
        Prediction of `classifier` when predicting for `X_test`.
    y_pred_proba : ndarray of shape (n_samples, 2), dtype=np.float64
        Probabilities of `classifier` when predicting for `X_test`.
    y_pred_decision : ndarray of shape (n_samples,), dtype=np.float64
        Decision function values of `classifier` when predicting on `X_test`.
    """
    from sklearn.datasets import load_breast_cancer
    from sklearn.utils import shuffle

    X, y = load_breast_cancer(return_X_y=True)
    # create an highly imbalanced classification task
    idx_positive = np.flatnonzero(y == 1)
    idx_negative = np.flatnonzero(y == 0)
    idx_selected = np.hstack([idx_negative, idx_positive[:25]])
    X, y = X[idx_selected], y[idx_selected]
    X, y = shuffle(X, y, random_state=42)
    # only use 2 features to make the problem even harder
    X = X[:, :2]
    y = np.array(["cancer" if c == 1 else "not cancer" for c in y], dtype=object)
    X_train, X_test, y_train, y_test = train_test_split(
        X,
        y,
        stratify=y,
        random_state=0,
    )
    classifier = LogisticRegression().fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
    y_pred_proba = classifier.predict_proba(X_test)
    y_pred_decision = classifier.decision_function(X_test)

    return classifier, X_test, y_test, y_pred, y_pred_proba, y_pred_decision


def test_average_precision_pos_label(string_labeled_classification_problem):
    # check that _Scorer will lead to the right score when passing
    # `pos_label`. Currently, only `average_precision_score` is defined to
    # be such a scorer.
    (
        clf,
        X_test,
        y_test,
        _,
        y_pred_proba,
        y_pred_decision,
    ) = string_labeled_classification_problem

    pos_label = "cancer"
    # we need to select the positive column or reverse the decision values
    y_pred_proba = y_pred_proba[:, 0]
    y_pred_decision = y_pred_decision * -1
    assert clf.classes_[0] == pos_label

    # check that when calling the scoring function, probability estimates and
    # decision values lead to the same results
    ap_proba = average_precision_score(y_test, y_pred_proba, pos_label=pos_label)
    ap_decision_function = average_precision_score(
        y_test, y_pred_decision, pos_label=pos_label
    )
    assert ap_proba == pytest.approx(ap_decision_function)

    # create a scorer which would require to pass a `pos_label`
    # check that it fails if `pos_label` is not provided
    average_precision_scorer = make_scorer(
        average_precision_score,
        response_method=("decision_function", "predict_proba"),
    )
    err_msg = "pos_label=1 is not a valid label. It should be one of "
    with pytest.raises(ValueError, match=err_msg):
        average_precision_scorer(clf, X_test, y_test)

    # otherwise, the scorer should give the same results than calling the
    # scoring function
    average_precision_scorer = make_scorer(
        average_precision_score,
        response_method=("decision_function", "predict_proba"),
        pos_label=pos_label,
    )
    ap_scorer = average_precision_scorer(clf, X_test, y_test)

    assert ap_scorer == pytest.approx(ap_proba)

    # The above scorer call is using `clf.decision_function`. We will force
    # it to use `clf.predict_proba`.
    clf_without_predict_proba = deepcopy(clf)

    def _predict_proba(self, X):
        raise NotImplementedError

    clf_without_predict_proba.predict_proba = partial(
        _predict_proba, clf_without_predict_proba
    )
    # sanity check
    with pytest.raises(NotImplementedError):
        clf_without_predict_proba.predict_proba(X_test)

    ap_scorer = average_precision_scorer(clf_without_predict_proba, X_test, y_test)
    assert ap_scorer == pytest.approx(ap_proba)


def test_brier_score_loss_pos_label(string_labeled_classification_problem):
    # check that _Scorer leads to the right score when `pos_label` is
    # provided. Currently only the `brier_score_loss` is defined to be such
    # a scorer.
    clf, X_test, y_test, _, y_pred_proba, _ = string_labeled_classification_problem

    pos_label = "cancer"
    assert clf.classes_[0] == pos_label

    # brier score loss is symmetric
    brier_pos_cancer = brier_score_loss(y_test, y_pred_proba[:, 0], pos_label="cancer")
    brier_pos_not_cancer = brier_score_loss(
        y_test, y_pred_proba[:, 1], pos_label="not cancer"
    )
    assert brier_pos_cancer == pytest.approx(brier_pos_not_cancer)

    brier_scorer = make_scorer(
        brier_score_loss,
        response_method="predict_proba",
        pos_label=pos_label,
    )
    assert brier_scorer(clf, X_test, y_test) == pytest.approx(brier_pos_cancer)


@pytest.mark.parametrize(
    "score_func", [f1_score, precision_score, recall_score, jaccard_score]
)
def test_non_symmetric_metric_pos_label(
    score_func, string_labeled_classification_problem
):
    # check that _Scorer leads to the right score when `pos_label` is
    # provided. We check for all possible metric supported.
    # Note: At some point we may end up having "scorer tags".
    clf, X_test, y_test, y_pred, _, _ = string_labeled_classification_problem

    pos_label = "cancer"
    assert clf.classes_[0] == pos_label

    score_pos_cancer = score_func(y_test, y_pred, pos_label="cancer")
    score_pos_not_cancer = score_func(y_test, y_pred, pos_label="not cancer")

    assert score_pos_cancer != pytest.approx(score_pos_not_cancer)

    scorer = make_scorer(score_func, pos_label=pos_label)
    assert scorer(clf, X_test, y_test) == pytest.approx(score_pos_cancer)


@pytest.mark.parametrize(
    "scorer",
    [
        make_scorer(
            average_precision_score,
            response_method=("decision_function", "predict_proba"),
            pos_label="xxx",
        ),
        make_scorer(brier_score_loss, response_method="predict_proba", pos_label="xxx"),
        make_scorer(f1_score, pos_label="xxx"),
    ],
    ids=["non-thresholded scorer", "probability scorer", "thresholded scorer"],
)
def test_scorer_select_proba_error(scorer):
    # check that we raise the proper error when passing an unknown
    # pos_label
    X, y = make_classification(
        n_classes=2, n_informative=3, n_samples=20, random_state=0
    )
    lr = LogisticRegression().fit(X, y)
    assert scorer._kwargs["pos_label"] not in np.unique(y).tolist()

    err_msg = "is not a valid label"
    with pytest.raises(ValueError, match=err_msg):
        scorer(lr, X, y)


def test_get_scorer_return_copy():
    # test that get_scorer returns a copy
    assert get_scorer("roc_auc") is not get_scorer("roc_auc")


def test_scorer_no_op_multiclass_select_proba():
    # check that calling a _Scorer on a multiclass problem do not raise
    # even if `y_true` would be binary during the scoring.
    # `_select_proba_binary` should not be called in this case.
    X, y = make_classification(
        n_classes=3, n_informative=3, n_samples=20, random_state=0
    )
    lr = LogisticRegression().fit(X, y)

    mask_last_class = y == lr.classes_[-1]
    X_test, y_test = X[~mask_last_class], y[~mask_last_class]
    assert_array_equal(np.unique(y_test), lr.classes_[:-1])

    scorer = make_scorer(
        roc_auc_score,
        response_method="predict_proba",
        multi_class="ovo",
        labels=lr.classes_,
    )
    scorer(lr, X_test, y_test)


@pytest.mark.parametrize("name", get_scorer_names())
def test_scorer_set_score_request_raises(name):
    """Test that set_score_request is only available when feature flag is on."""
    # Make sure they expose the routing methods.
    scorer = get_scorer(name)
    with pytest.raises(RuntimeError, match="This method is only available"):
        scorer.set_score_request()


@pytest.mark.parametrize("name", get_scorer_names(), ids=get_scorer_names())
@config_context(enable_metadata_routing=True)
def test_scorer_metadata_request(name):
    """Testing metadata requests for scorers.

    This test checks many small things in a large test, to reduce the
    boilerplate required for each section.
    """
    # Make sure they expose the routing methods.
    scorer = get_scorer(name)
    assert hasattr(scorer, "set_score_request")
    assert hasattr(scorer, "get_metadata_routing")

    # Check that by default no metadata is requested.
    assert_request_is_empty(scorer.get_metadata_routing())

    weighted_scorer = scorer.set_score_request(sample_weight=True)
    # set_score_request should mutate the instance, rather than returning a
    # new instance
    assert weighted_scorer is scorer

    # make sure the scorer doesn't request anything on methods other than
    # `score`, and that the requested value on `score` is correct.
    assert_request_is_empty(weighted_scorer.get_metadata_routing(), exclude="score")
    assert (
        weighted_scorer.get_metadata_routing().score.requests["sample_weight"] is True
    )

    # make sure putting the scorer in a router doesn't request anything by
    # default
    router = MetadataRouter(owner="test").add(
        scorer=get_scorer(name),
        method_mapping=MethodMapping().add(caller="score", callee="score"),
    )
    # make sure `sample_weight` is refused if passed.
    with pytest.raises(TypeError, match="got unexpected argument"):
        router.validate_metadata(params={"sample_weight": 1}, method="score")
    # make sure `sample_weight` is not routed even if passed.
    routed_params = router.route_params(params={"sample_weight": 1}, caller="score")
    assert not routed_params.scorer.score

    # make sure putting weighted_scorer in a router requests sample_weight
    router = MetadataRouter(owner="test").add(
        scorer=weighted_scorer,
        method_mapping=MethodMapping().add(caller="score", callee="score"),
    )
    router.validate_metadata(params={"sample_weight": 1}, method="score")
    routed_params = router.route_params(params={"sample_weight": 1}, caller="score")
    assert list(routed_params.scorer.score.keys()) == ["sample_weight"]


@config_context(enable_metadata_routing=True)
def test_metadata_kwarg_conflict():
    """This test makes sure the right warning is raised if the user passes
    some metadata both as a constructor to make_scorer, and during __call__.
    """
    X, y = make_classification(
        n_classes=3, n_informative=3, n_samples=20, random_state=0
    )
    lr = LogisticRegression().fit(X, y)

    scorer = make_scorer(
        roc_auc_score,
        response_method="predict_proba",
        multi_class="ovo",
        labels=lr.classes_,
    )
    with pytest.warns(UserWarning, match="already set as kwargs"):
        scorer.set_score_request(labels=True)

    with pytest.warns(UserWarning, match="There is an overlap"):
        scorer(lr, X, y, labels=lr.classes_)


@config_context(enable_metadata_routing=True)
def test_PassthroughScorer_set_score_request():
    """Test that _PassthroughScorer.set_score_request adds the correct metadata request
    on itself and doesn't change its estimator's routing."""
    est = LogisticRegression().set_score_request(sample_weight="estimator_weights")
    # make a `_PassthroughScorer` with `check_scoring`:
    scorer = check_scoring(est, None)
    assert (
        scorer.get_metadata_routing().score.requests["sample_weight"]
        == "estimator_weights"
    )

    scorer.set_score_request(sample_weight="scorer_weights")
    assert (
        scorer.get_metadata_routing().score.requests["sample_weight"]
        == "scorer_weights"
    )

    # making sure changing the passthrough object doesn't affect the estimator.
    assert (
        est.get_metadata_routing().score.requests["sample_weight"]
        == "estimator_weights"
    )


def test_PassthroughScorer_set_score_request_raises_without_routing_enabled():
    """Test that _PassthroughScorer.set_score_request raises if metadata routing is
    disabled."""
    scorer = check_scoring(LogisticRegression(), None)
    msg = "This method is only available when metadata routing is enabled."

    with pytest.raises(RuntimeError, match=msg):
        scorer.set_score_request(sample_weight="my_weights")


@config_context(enable_metadata_routing=True)
def test_multimetric_scoring_metadata_routing():
    # Test that _MultimetricScorer properly routes metadata.
    def score1(y_true, y_pred):
        return 1

    def score2(y_true, y_pred, sample_weight="test"):
        # make sure sample_weight is not passed
        assert sample_weight == "test"
        return 1

    def score3(y_true, y_pred, sample_weight=None):
        # make sure sample_weight is passed
        assert sample_weight is not None
        return 1

    scorers = {
        "score1": make_scorer(score1),
        "score2": make_scorer(score2).set_score_request(sample_weight=False),
        "score3": make_scorer(score3).set_score_request(sample_weight=True),
    }

    X, y = make_classification(
        n_samples=50, n_features=2, n_redundant=0, random_state=0
    )

    clf = DecisionTreeClassifier().fit(X, y)

    scorer_dict = _check_multimetric_scoring(clf, scorers)
    multi_scorer = _MultimetricScorer(scorers=scorer_dict)
    # this should fail, because metadata routing is not enabled and w/o it we
    # don't support different metadata for different scorers.
    # TODO: remove when enable_metadata_routing is deprecated
    with config_context(enable_metadata_routing=False):
        with pytest.raises(TypeError, match="got an unexpected keyword argument"):
            multi_scorer(clf, X, y, sample_weight=1)

    # This passes since routing is done.
    multi_scorer(clf, X, y, sample_weight=1)


def test_kwargs_without_metadata_routing_error():
    # Test that kwargs are not supported in scorers if metadata routing is not
    # enabled.
    # TODO: remove when enable_metadata_routing is deprecated
    def score(y_true, y_pred, param=None):
        return 1  # pragma: no cover

    X, y = make_classification(
        n_samples=50, n_features=2, n_redundant=0, random_state=0
    )

    clf = DecisionTreeClassifier().fit(X, y)
    scorer = make_scorer(score)
    with config_context(enable_metadata_routing=False):
        with pytest.raises(
            ValueError, match="is only supported if enable_metadata_routing=True"
        ):
            scorer(clf, X, y, param="blah")


def test_get_scorer_multilabel_indicator():
    """Check that our scorer deal with multi-label indicator matrices.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/26817
    """
    X, Y = make_multilabel_classification(n_samples=72, n_classes=3, random_state=0)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=0)

    estimator = KNeighborsClassifier().fit(X_train, Y_train)

    score = get_scorer("average_precision")(estimator, X_test, Y_test)
    assert score &gt; 0.8


@pytest.mark.parametrize(
    "scorer, expected_repr",
    [
        (
            get_scorer("accuracy"),
            "make_scorer(accuracy_score, response_method='predict')",
        ),
        (
            get_scorer("neg_log_loss"),
            (
                "make_scorer(log_loss, greater_is_better=False,"
                " response_method='predict_proba')"
            ),
        ),
        (
            get_scorer("roc_auc"),
            (
                "make_scorer(roc_auc_score, response_method="
                "('decision_function', 'predict_proba'))"
            ),
        ),
        (
            make_scorer(fbeta_score, beta=2),
            "make_scorer(fbeta_score, response_method='predict', beta=2)",
        ),
    ],
)
def test_make_scorer_repr(scorer, expected_repr):
    """Check the representation of the scorer."""
    assert repr(scorer) == expected_repr


@pytest.mark.parametrize("pass_estimator", [True, False])
def test_get_scorer_multimetric(pass_estimator):
    """Check that check_scoring is compatible with multi-metric configurations."""
    X, y = make_classification(n_samples=150, n_features=10, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LogisticRegression(random_state=0)

    if pass_estimator:
        check_scoring_ = check_scoring
    else:
        check_scoring_ = partial(check_scoring, clf)

    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)
    y_proba = clf.predict_proba(X_test)

    expected_results = {
        "r2": r2_score(y_test, y_pred),
        "roc_auc": roc_auc_score(y_test, y_proba[:, 1]),
        "accuracy": accuracy_score(y_test, y_pred),
    }

    for container in [set, list, tuple]:
        scoring = check_scoring_(scoring=container(["r2", "roc_auc", "accuracy"]))
        result = scoring(clf, X_test, y_test)

        assert result.keys() == expected_results.keys()
        for name in result:
            assert result[name] == pytest.approx(expected_results[name])

    def double_accuracy(y_true, y_pred):
        return 2 * accuracy_score(y_true, y_pred)

    custom_scorer = make_scorer(double_accuracy, response_method="predict")

    # dict with different names
    dict_scoring = check_scoring_(
        scoring={
            "my_r2": "r2",
            "my_roc_auc": "roc_auc",
            "double_accuracy": custom_scorer,
        }
    )
    dict_result = dict_scoring(clf, X_test, y_test)
    assert len(dict_result) == 3
    assert dict_result["my_r2"] == pytest.approx(expected_results["r2"])
    assert dict_result["my_roc_auc"] == pytest.approx(expected_results["roc_auc"])
    assert dict_result["double_accuracy"] == pytest.approx(
        2 * expected_results["accuracy"]
    )


def test_multimetric_scorer_repr():
    """Check repr for multimetric scorer"""
    multi_metric_scorer = check_scoring(scoring=["accuracy", "r2"])

    assert str(multi_metric_scorer) == 'MultiMetricScorer("accuracy", "r2")'


def test_check_scoring_multimetric_raise_exc():
    """Test that check_scoring returns error code for a subset of scorers in
    multimetric scoring if raise_exc=False and raises otherwise."""

    def raising_scorer(estimator, X, y):
        raise ValueError("That doesn't work.")

    X, y = make_classification(n_samples=150, n_features=10, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LogisticRegression().fit(X_train, y_train)

    # "raising_scorer" is raising ValueError and should return an string representation
    # of the error of the last scorer:
    scoring = {
        "accuracy": make_scorer(accuracy_score),
        "raising_scorer": raising_scorer,
    }
    scoring_call = check_scoring(estimator=clf, scoring=scoring, raise_exc=False)
    scores = scoring_call(clf, X_test, y_test)
    assert "That doesn't work." in scores["raising_scorer"]

    # should raise an error
    scoring_call = check_scoring(estimator=clf, scoring=scoring, raise_exc=True)
    err_msg = "That doesn't work."
    with pytest.raises(ValueError, match=err_msg):
        scores = scoring_call(clf, X_test, y_test)


@pytest.mark.parametrize("enable_metadata_routing", [True, False])
def test_metadata_routing_multimetric_metadata_routing(enable_metadata_routing):
    """Test multimetric scorer works with and without metadata routing enabled when
    there is no actual metadata to pass.

    Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28256
    """
    X, y = make_classification(n_samples=50, n_features=10, random_state=0)
    estimator = EstimatorWithFitAndPredict().fit(X, y)

    multimetric_scorer = _MultimetricScorer(scorers={"acc": get_scorer("accuracy")})
    with config_context(enable_metadata_routing=enable_metadata_routing):
        multimetric_scorer(estimator, X, y)


def test_curve_scorer():
    """Check the behaviour of the `_CurveScorer` class."""
    X, y = make_classification(random_state=0)
    estimator = LogisticRegression().fit(X, y)
    curve_scorer = _CurveScorer(
        balanced_accuracy_score,
        sign=1,
        response_method="predict_proba",
        thresholds=10,
        kwargs={},
    )
    scores, thresholds = curve_scorer(estimator, X, y)

    assert thresholds.shape == scores.shape
    # check that the thresholds are probabilities with extreme values close to 0 and 1.
    # they are not exactly 0 and 1 because they are the extremum of the
    # `estimator.predict_proba(X)` values.
    assert 0 &lt;= thresholds.min() &lt;= 0.01
    assert 0.99 &lt;= thresholds.max() &lt;= 1
    # balanced accuracy should be between 0.5 and 1 when it is not adjusted
    assert 0.5 &lt;= scores.min() &lt;= 1

    # check that passing kwargs to the scorer works
    curve_scorer = _CurveScorer(
        balanced_accuracy_score,
        sign=1,
        response_method="predict_proba",
        thresholds=10,
        kwargs={"adjusted": True},
    )
    scores, thresholds = curve_scorer(estimator, X, y)

    # balanced accuracy should be between 0.5 and 1 when it is not adjusted
    assert 0 &lt;= scores.min() &lt;= 0.5

    # check that we can inverse the sign of the score when dealing with `neg_*` scorer
    curve_scorer = _CurveScorer(
        balanced_accuracy_score,
        sign=-1,
        response_method="predict_proba",
        thresholds=10,
        kwargs={"adjusted": True},
    )
    scores, thresholds = curve_scorer(estimator, X, y)

    assert all(scores &lt;= 0)


def test_curve_scorer_pos_label(global_random_seed):
    """Check that we propagate properly the `pos_label` parameter to the scorer."""
    n_samples = 30
    X, y = make_classification(
        n_samples=n_samples, weights=[0.9, 0.1], random_state=global_random_seed
    )
    estimator = LogisticRegression().fit(X, y)

    curve_scorer = _CurveScorer(
        recall_score,
        sign=1,
        response_method="predict_proba",
        thresholds=10,
        kwargs={"pos_label": 1},
    )
    scores_pos_label_1, thresholds_pos_label_1 = curve_scorer(estimator, X, y)

    curve_scorer = _CurveScorer(
        recall_score,
        sign=1,
        response_method="predict_proba",
        thresholds=10,
        kwargs={"pos_label": 0},
    )
    scores_pos_label_0, thresholds_pos_label_0 = curve_scorer(estimator, X, y)

    # Since `pos_label` is forwarded to the curve_scorer, the thresholds are not equal.
    assert not (thresholds_pos_label_1 == thresholds_pos_label_0).all()
    # The min-max range for the thresholds is defined by the probabilities of the
    # `pos_label` class (the column of `predict_proba`).
    y_pred = estimator.predict_proba(X)
    assert thresholds_pos_label_0.min() == pytest.approx(y_pred.min(axis=0)[0])
    assert thresholds_pos_label_0.max() == pytest.approx(y_pred.max(axis=0)[0])
    assert thresholds_pos_label_1.min() == pytest.approx(y_pred.min(axis=0)[1])
    assert thresholds_pos_label_1.max() == pytest.approx(y_pred.max(axis=0)[1])

    # The recall cannot be negative and `pos_label=1` should have a higher recall
    # since there is less samples to be considered.
    assert 0.0 &lt; scores_pos_label_0.min() &lt; scores_pos_label_1.min()
    assert scores_pos_label_0.max() == pytest.approx(1.0)
    assert scores_pos_label_1.max() == pytest.approx(1.0)


# TODO(1.8): remove
def test_make_scorer_reponse_method_default_warning():
    with pytest.warns(FutureWarning, match="response_method=None is deprecated"):
        make_scorer(accuracy_score, response_method=None)

    # No warning is raised if response_method is left to its default value
    # because the future default value has the same effect as the current one.
    with warnings.catch_warnings():
        warnings.simplefilter("error", FutureWarning)
        make_scorer(accuracy_score)
</pre></body></html>