
    5[g-                    r    d dl mZ dgZd dlZd dlmZ d dlZd dlm	Z	 erd dl
mZ d Z	 d	 	 	 	 	 	 	 	 	 d	dZy)
    )annotationsgeometric_slerpN)TYPE_CHECKING)	euclideanc                   t        j                  | |g      }t         j                  j                  |j                        \  }}dt        j
                  |      dk\  z  dz
  }|j                  |j                  d d t         j                  f   z  }|j                  |j                  d d t         j                  f   z  }t        j                  | |      }t         j                  j                  |      }t        j                  ||      }	|\  } }t        j                  ||	z        }t        j                  ||	z        }| |d d t         j                  f   z  ||d d t         j                  f   z  z   S )N   r      )npvstacklinalgqrTdiagnewaxisdotdetarctan2sincos)
startendtbasisQRsignscsomegas
             Y/var/www/html/bid-api/venv/lib/python3.12/site-packages/scipy/spatial/_geometric_slerp.py_geometric_slerpr!      s   IIucl#E99<< DAqq!A%E	eggam$$A	eggam$$A 	ucA
		aAJJq!E JE3
q5yA
q5yA1Q

]##cAam,<&<<<    c                Z   t        j                  | t         j                        } t        j                  |t         j                        }t        j                  |      }|j                  dkD  rt	        d      | j                  dk7  s|j                  dk7  rt	        d      | j
                  |j
                  k7  rt	        d      | j
                  dk  s|j
                  dk  rt	        d      t        j                  | |      r!t        j                  | | |j
                        S | |fD ]C  }t        j                  t         j                  j                  |      dd	d
      r:t	        d       t        |t              st	        d      t        j                  |      }t        | |      }t        j                  |dd
|      rt        j                   dd       t        j                  |t         j                        }|j
                  d
k(  r!t        j"                  d
| j
                  f      S |j%                         d
k  s|j'                         dkD  rt	        d      |j                  d
k(  r.t)        | |t        j*                  |            j-                         S t)        | ||      S )a  
    Geometric spherical linear interpolation.

    The interpolation occurs along a unit-radius
    great circle arc in arbitrary dimensional space.

    Parameters
    ----------
    start : (n_dimensions, ) array-like
        Single n-dimensional input coordinate in a 1-D array-like
        object. `n` must be greater than 1.
    end : (n_dimensions, ) array-like
        Single n-dimensional input coordinate in a 1-D array-like
        object. `n` must be greater than 1.
    t : float or (n_points,) 1D array-like
        A float or 1D array-like of doubles representing interpolation
        parameters, with values required in the inclusive interval
        between 0 and 1. A common approach is to generate the array
        with ``np.linspace(0, 1, n_pts)`` for linearly spaced points.
        Ascending, descending, and scrambled orders are permitted.
    tol : float
        The absolute tolerance for determining if the start and end
        coordinates are antipodes.

    Returns
    -------
    result : (t.size, D)
        An array of doubles containing the interpolated
        spherical path and including start and
        end when 0 and 1 t are used. The
        interpolated values should correspond to the
        same sort order provided in the t array. The result
        may be 1-dimensional if ``t`` is a float.

    Raises
    ------
    ValueError
        If ``start`` and ``end`` are antipodes, not on the
        unit n-sphere, or for a variety of degenerate conditions.

    See Also
    --------
    scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions

    Notes
    -----
    The implementation is based on the mathematical formula provided in [1]_,
    and the first known presentation of this algorithm, derived from study of
    4-D geometry, is credited to Glenn Davis in a footnote of the original
    quaternion Slerp publication by Ken Shoemake [2]_.

    .. versionadded:: 1.5.0

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp
    .. [2] Ken Shoemake (1985) Animating rotation with quaternion curves.
           ACM SIGGRAPH Computer Graphics, 19(3): 245-254.

    Examples
    --------
    Interpolate four linearly-spaced values on the circumference of
    a circle spanning 90 degrees:

    >>> import numpy as np
    >>> from scipy.spatial import geometric_slerp
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> start = np.array([1, 0])
    >>> end = np.array([0, 1])
    >>> t_vals = np.linspace(0, 1, 4)
    >>> result = geometric_slerp(start,
    ...                          end,
    ...                          t_vals)

    The interpolated results should be at 30 degree intervals
    recognizable on the unit circle:

    >>> ax.scatter(result[...,0], result[...,1], c='k')
    >>> circle = plt.Circle((0, 0), 1, color='grey')
    >>> ax.add_artist(circle)
    >>> ax.set_aspect('equal')
    >>> plt.show()

    Attempting to interpolate between antipodes on a circle is
    ambiguous because there are two possible paths, and on a
    sphere there are infinite possible paths on the geodesic surface.
    Nonetheless, one of the ambiguous paths is returned along
    with a warning:

    >>> opposite_pole = np.array([-1, 0])
    >>> with np.testing.suppress_warnings() as sup:
    ...     sup.filter(UserWarning)
    ...     geometric_slerp(start,
    ...                     opposite_pole,
    ...                     t_vals)
    array([[ 1.00000000e+00,  0.00000000e+00],
           [ 5.00000000e-01,  8.66025404e-01],
           [-5.00000000e-01,  8.66025404e-01],
           [-1.00000000e+00,  1.22464680e-16]])

    Extend the original example to a sphere and plot interpolation
    points in 3D:

    >>> from mpl_toolkits.mplot3d import proj3d
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111, projection='3d')

    Plot the unit sphere for reference (optional):

    >>> u = np.linspace(0, 2 * np.pi, 100)
    >>> v = np.linspace(0, np.pi, 100)
    >>> x = np.outer(np.cos(u), np.sin(v))
    >>> y = np.outer(np.sin(u), np.sin(v))
    >>> z = np.outer(np.ones(np.size(u)), np.cos(v))
    >>> ax.plot_surface(x, y, z, color='y', alpha=0.1)

    Interpolating over a larger number of points
    may provide the appearance of a smooth curve on
    the surface of the sphere, which is also useful
    for discretized integration calculations on a
    sphere surface:

    >>> start = np.array([1, 0, 0])
    >>> end = np.array([0, 0, 1])
    >>> t_vals = np.linspace(0, 1, 200)
    >>> result = geometric_slerp(start,
    ...                          end,
    ...                          t_vals)
    >>> ax.plot(result[...,0],
    ...         result[...,1],
    ...         result[...,2],
    ...         c='k')
    >>> plt.show()
    )dtyper	   z:The interpolation parameter value must be one dimensional.z1Start and end coordinates must be one-dimensionalz;The dimensions of start and end must match (have same size)r   zLThe start and end coordinates must both be in at least two-dimensional spaceg      ?g&.>r   )rtolatolz(start and end are not on a unit n-sphereztol must be a floatg       @z_start and end are antipodes using the specified tolerance; this may cause ambiguous slerp paths)
stacklevelz)interpolation parameter must be in [0, 1])r
   asarrayfloat64ndim
ValueErrorsizearray_equallinspaceallcloser   norm
isinstancefloatfabsr   warningswarnemptyminmaxr!   
atleast_1dravel)r   r   r   tolcoord
coord_dists         r    r   r   #   s:   ^ JJuBJJ/E
**S


+C


1Avvz : ; 	; zzQ#((a- 3 4 	4 zzSXX ; < 	< zzA~A ! " 	" 
~~eS!{{5%00 {{299>>%0# $ !#  3 4 4	  c5!.//ggcl5#&J 
{{:s5 = "#	$
 	

1BJJ'Avv{xxEJJ((uuw{aeegkDEEvv{ # "a 0227%'	:   # !# 	#r"   )gHz>)
r   npt.ArrayLiker   r>   r   r>   r;   r2   returnz
np.ndarray)
__future__r   __all__r4   typingr   numpyr
   scipy.spatial.distancer   numpy.typingnptr!   r    r"   r    <module>rH      se    "
     ,=0 	M#M#	M# M# 
	M#
 M#r"   